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Final Report: Grant No. DAAH 04-96-1-0184 
XX. International Workshop on Condensed Matter Theories 

The grant enabled 13 scientists from the U.S.A. to participate at the XX International 

Workshop on Condensed Matter Theories held in Pune, India, in December 1996 and two 

physicists from the U.S.A. at the follow up XXI International Workshop on Condensed Matter 

Theories held at Luso, Portugal. Without this grant the U.S. participation at the Workshops 

would have been very minimal. The grant allowed the U.S. scientists to interact effectively with 

their international counterparts and develop new collaboration. 

The list of the scientists form the U.S.A. who have been supported by this grant is 

attached in Appendix 1 and the titles of their talks presented at the Workshop are listed in 

Appendix 2. Participants from the U.S.A. receiving the grant have acknowledged it in their 

respective articles. Copies of these talks are attached in Appendix 3. All presentations were 

invited talks and have been accepted for publications in Condensed Matter Theories, Volume 13 

and 14. The principal investigator is a co-editor of Volume 14 and a member of the editorial 

board of the series. 

In keeping with the objective of the grant, the primary theme of the workshops was Bose- 

Einstein condensation. This phenomenon was extensively discussed for atomic gases and in 

liquid helium. Other topics include the theory of superconducting materials, recent development 

in density functional theory, quantum phase transitions, plasma waves in solids, and finite size 

scaling in Heisenberg model. 

The Workshop's other key objectives of facilitating interaction among physicists working 

in diverse areas of condensed matter physics, promoting interaction among physicists of 

developed and developing nations, cross fertilization of ideas and development of new interest 

^ß^Xm-IHSFBGTBDa 



have been fulfilled. 

Thus, the purpose and the objective of the grant have been achieved. 
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1 Dr. P. M. Bakshi Boston College, Chestnut Hill, MA 

2 Dr. C. Campbell The University of Minnesota, Minneapolis, MN 

3 Dr. D. M. Ceperley The University of Illinois, Urbana, IL 

4 Dr. R. Chasman Argonne National Laboratory, Argonne, IL 

5 Dr. S. A. Chin Texas A&M, College Station, TX 

6 Dr. J. W. Clark Washington University, St. Louis, MO 

7 Dr. M. de Llano North Dakota State University, Fargo, ND 

8 Dr. D. Ernst Vanderbilt University, Nashville, TN 
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12 Dr. I. Silvera Harvard University, Cambridge, MA 
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Appendix 2 

Title of the Talks and the Authors of the Articles 

No. Title of Talks Authors 

1 Mathematical Signatures of Plasma Instabilities in 
Low Dimensional Solid State Systems 

P. Bakshi and 
K. Kempa 

2 Bose-Einstein Condensation, Pairing and Odlro: a 
View From Co-Ordinate Space 

C. E. Campbell 

3 Conditions of Superfluidity in Molecular 
Hydrogen 

D. M. Ceperly and 
M. C. Gordillo 

4 Pairing Forces in Nuclei R. R. Chasman 

5 Ground State Calculations of Lithium Atoms in a 
Harmonic Trap 

S. A. Chin, H. A. Forbert, and 
E. Krotscheck 

6 Bose-Einstein Condensation in Liquid Helium: A 
Correlated Density Matrix Theory 

J. W. Clark, M. L. Ristig, 
T. Lindenau and M. Serhan 

7 Can BCS and BEC be Synthesized? V. C. Aguilera-Navarro, 
M. Casas, S. Fujita, M. G. Lopez, 
M. De Llano, A. Rigo, 0. Rojo, 
M. A. Solis, and A. A. Valladares 

8 Relativistic Kinematics and Unitarity Relations for 
Proper Self-Energy 

D. J. Ernst 

9 On the Thermodynamics Phase Transitions 
Relevant to Superconductivity and Colossal 
Magneto-Resistivity for a Hubbard Type of 
Hamiltonian 

S. Picozzi, 
A. N. Proto 
and 
F. B. Malik 

10 A Model for Colossal Magnetoresistance Based on 
the Maximum Entropy Principle 

S. Picozzi and 
F. B. Malik 

11 Bose Condensation in 4He and Neutron Scattering R. N. Silver 

12 Experiments Designed to Achieve BEC in Spin- 
Polarized Hydrogen 

I. F. Silvera, I. J. Bonaldi, 
T. M. Brill, K. Penanen, 
and L. Venkataraman 

13 Superfluidity and Criticality in Bose Systems P. B. Weichman 
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Workshop on Condensed Matter Theories held at Pune, India, in December 1996, and Luso, 
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Invited Talk at XXth International Workshop on Condensed-Matter Theories (Poone, INDIA, De- 

cember 9-14, 1996). Shorter version to be published by Nova Science in Condensed-Matter Theories" vol. 

12 (1997). 

CAN BCS AND BEC BE SYNTHESIZED? 

V.C. Aguilera-Navarro1,  M. Casas2,   S. Fujita3, 
M.G. Lopez4,   M. de Llano4,   A. Rigo2, 

0. Rojo5, M.A. Solis6 and   A.A. Valladares4 

1 Institute de Fisica Teorica-UNESP, 01405 Säo Paulo, BRAZIL 
and 

Departamento de Fisica, Universidade Estadual de Londrina 
Londrina, PR, BRAZIL 

2Departament de Fisica, Universität de les Hies Balears 
07071 Palma de Mallorca, SPAIN 

department of Physics, SUNY, Buffalo, NY 14260-1500, USA 
4Instituto de Investigaciones en Materiales, UN AM 

04510 Mexico DF, MEXICO 
5PESTIC, Secretaria Academica, IPN, Mexico DF, MEXICO 

6 Instituto de Fisica, UNAM, 01000 Mexico DF, MEXICO 

Abstract 

Though never proved in detail, the superconducting phase is widely believed to 
be a kind of Bose condensate. Transition temperatures substantially higher than 
BCS Tc values for a many-fermion system interacting pairwise via the BCS inter- 
action model ensue from Bose-Einstein condensation (BEC) in either a pure gas of 
"bosonic" Cooper pairs or in a mixture of the latter plus background fermions when 
pair-breaking effects are explicitly allowed. Cooper pairs of definite center-of-mass 
momentum (CMM) but consistent with all relative momentum are "bosonic" since, 
even if not fulfilling Bose commutation relations, they exhibit indefinite maximum 
occupation in a given state and thus obey the Bose-Einstein distribution. The tran- 
sition occurs even in weak coupling, and more significantly even in two dimensions 
where ordinary BEC is prohibited—due to the crucial ingredient now being the (al- 
most) linear, as opposed to quadratic, dispersion relation of the Cooper pair binding 
energy as function of its CMM. Nonzero-CMM pairs, neglected in BCS theory, are in- 
deed found to be vanishingly small in number, particularly in small coupling and/or 
for small Debye-to-Fermi-temperature ratio, but play a crucial role. For example, 
BEC in the pure "bosonic" gas model is possible for all space dimensions > 1, thus 
allowing all superconductors to be Bose condensates in principle. 



1. Introduction 

The phenomenon of superconductivity has now been observed in all four broad 
classes of materials: metals (in 1911, by Onnes), semiconductors (in 1964 [1]), poly- 
mers (in 1975 [2]) and ceramics (in 1986 [3]). A recent review [4] of some Rus- 
sian experimental work in certain polymers even suggests the possibility of room- 
temperature superconductivity. 

It seems to be universally believed, though not yet proved, that superconduc- 
tivity is just another example of Bose-Einstein condensation, as is superfluidity in 
liquid helium-4 [5] or less directly in liquid helium-3 [6].   The notion of supercon- 
ductivity as a Bose-Einstein (BE)-like transition of an assembly of bosonic objects 
is not new, going back at least to Ogg [7] in the forties and to Ginzburg [8] and 
to Schafroth [9] in the fifties.  The idea has resurfaced [10] more recently with the 
discovery [3] of short-coherence-length cuprate superconductors. Anderson [11] envis- 
ages crystalline electrons (or holes) as pair-clusters of excitations that are fermionic, 
chargeless "spinons"and bosonic, charged "holons"—the latter susceptible [12] to a 
kind of Bose-Einstein condensation (BEC). Schrieffer and co-workers [13] deal with a 
bosonic "spin-bag" which is shared by two holes. Friedberg, Lee and Ren [14] achieve 
fits to the cuprate data of Uemura et al.   [15] with a BE-like condensation in 2 + e 
dimensions [16] by assuming an effective bosonic pair mass in the direction perpen- 
dicular to the copper-oxide planes approaching the pronounced uniaxial anisotropy 
of 10s reported experimentally [17], e.g., in TIBaCaCuO. Indeed, the value of e it- 
self can be determined analytically in idealized situations [12], and is estimated [18] 
to be about 0.03 in cuprate superconductors—its small but nonzero value being a 
measure of the coupling between copper-oxide planes.   Alexandrov and Mott [19], 
as well as Ranninger and co-workers [20], concentrate on a bipolaronic picture and 
note an amazing similarity between at least two cuprate superconductors (with Tc ~ 
92K and 107K) and liquid 4He (Tc ~ 2.2K) as regards their empirical specific heat 
singularities across Tc.   Fujita and co-workers [21, 22, 23, 24] have generalized the 
Bardeen-Cooper-Schrieffer (BCS) formalism to include hole-hole (as well as particle- 
particle) Cooper pairs, stressing in addition that either type of pair (called "pairons") 
propagate not with a quadratic but with a linear dispersion relation, and are bosons 
which may BE-condense in 2D as well as in 3D according to very specific, unique Tc 

formulae which differ markedly from the familiar BEC Tc formula associated with 
quadratic-dispersion-relation bosons. The linear dispersion behavior of Cooper pairs 
was noted at least as early as 1964 in Schrieffer's monograph [25] on superconductiv- 
ity. 

Indeed, a BE paradigm in superconductivity is suggested by the recent Tc vs TF 

or TBE data extended beyond the cuprates by Uemura et al. [26] to virtually all 
exotic superconductors, whether ID-like, 2D-like or 3D-like, where TF is the Fermi 
temperature and the 3D BEC temperature TBE = 0.218Tp if all fermions in the 
original fermion gas are imagined paired. The exotic superconducting samples studied 
by Uemura et al. [26] have Tc values spanning almost three orders of magnitude and 
reveal an intriguing universal behavior roughly parallel to but shifted down from 
the straight line designating TBE in the "Uemura plot" of Tc vs TF or TBE, thus 
suggesting a BE mechanism somehow implicit in an appropriately generalized BCS 
formalism. 



Based on earlier work by Eagles [27] and by Leggett [28], Miyake [29] and later 
Randeria Duan and Shieh [30] formulated the 2D many-fermion problem at zero ab- 
solute temperature (T = 0) within a BCS formalism whereby both the gap equation 
and the number equation are solved self-consistently [31] but without explicit refer- 
ence to the underlying (possibly singular) two-fermion interaction potential which is 
replaced by a scattering t-matrix. The latter in turn is then related, at low-scattering 
energies, to the s-wave "scattering length". This self-consistent formulation leads to 
the usual BCS theory in the limit of weak coupling, and to an ideal gas of tightly- 
bound, well-separated bosons in the opposite, strong-coupling, limit. The so-called 
"BCS-Bose crossover" [32] formulation in 2D has been extended to finite T by van der 
Marel [33], as well as by Drechsler and Zwerger [34] who used an elegant functional 
integral approach which in lowest-order gives a Ginzburg-Landau theory. Following 
Ref. [30] a generalized coherence length (or, more precisely, a root-mean-square pair 
radius) was formulated within the BCS-Bose crossover picture in ID, 2D and 3D by 
Casas et a/.[35], and the 2D case compared with cuprate superconductor data. Their 
results suggested that these latter materials, among other 3D-like superconductors, 
might be moderately well described, at least in lowest order, as weakly-coupled within 
the BCS-Bose crossover formalism. 

The 3D BCS-Bose crossover problem was incisively analyzed by Nozieres and 
Schmitt-Rink [36]—in fact shortly before the 1986 discovery [3] of high-Tc cuprate 
superconductivity. Its definitive formulation in two transparent papers [37, 38] by 
Haussmann stressed the vital importance of triple self-consistency (viz., in the gap, 
number and single-particle-energy equations; cf. also Ref. [39]). Haussmann em- 
ploys the Thouless criterion [40] whereby the divergence of the real part of the 
temperature-dependent t-matrix evaluated at zero momentum and zero frequency 
leads to a (mean-field) superfluid transition temperature Tc that increases mono- 
tonically and smoothly from the weak-coupling (BCS) to the strong-coupling (Bose) 
extreme, the resulting Tc exactly reproducing, at the two limits, respectively, the 
BCS Tc formula (given in terms of the s-wave scattering length) as well as the fa- 
miliar Bose-Einstein condensation temperature formula. Coherence lengths in 3D at 
T = 0 have also been calculated [41] over the entire range of coupling/density within 
the BCS-Bose picture. 

In this paper we derive explicit Tc-formulae for BEC in d (> 0) dimensions for 
an ideal gas of identical bosons having a quadratic (Section 2) or a linear dispersion 
relation (Section 4); Cooper-pair dispersion relations, viz., binding-energy vs. center- 
of-mass-momenta curves are obtained numerically in 2D and in 3D in Section 3 by 
assuming Coulomb plus electron-phonon interactions mimicked via the familiar BCS 
interaction model; in Section 5 Cooper pairs are clearly distinguished from familiar 
elementary excitations such as zero-sound phonons or plasmons; Section 6 elaborates 
on the Davydov interpretation of the BCS ground state as an ideal mixture of fermion 
and boson ideal gases; Section 7 sketches a four-fluid statistical model of such a 
mixture that again leads to substantially higher critical transition temperatures than 
the BCS theory; and Section 8 gives conclusions. 



2. BEC of quadratic-dispersion-relation bosons in any dimension 

According to Ref. [16] on an ideal quantum gas of permanent (i.e., number- 
conserving) bosons in d spatial dimensions, there exists a non-zero absolute temper- 
ature Tc below which a macroscopic occupation emerges for a single (of an infinitely 
many) quantum state only if d > 2. (The d = 2 case, in fact, displays the same 
[42] smooth, singularity-free temperature-dependent specific heat for either bosons 
or fermions). The Bose-Einstein distribution summed over all states yields the to- 
tal number of bosons JV, each of mass m, of which, say JV0 are in the lowest state 
£* = h2k2/2m = (0 in the thermodynamic limit). Explicitly 

k 

where ß = l/kBT and /i < 0 is the chemical potential. For T > Tc, JV0 is negligible 
compared with JV; while for T < Tc, JV0 is a sizeable fraction of JV. At precisely 
T = Tc, N0 ~ 0 and /i~0, while at T = 0, JV = JV0 (viz., absence of any exclusion 
principle). To find Tc the sum in (1) can be converted to an integral over positive 
Jfc = |k|, where k is a <£-dimensional vector. The volume Vd(R) of a hypersphere of 
radius R in d > 0 dimensions is given [43] by 

_.d/2 prf 

W = WTWY (2) 

For d = 3, this is just 4TT.R
3
/3; for d = 2 it is the area irR2 of a circle of radius R; for 

d = 1 it is just the "diameter" 2R of a line of "radius" R; and for d - 0 it is unity. 
Using (2) for d > 0 the summation in (1) over our d-dimensional vector k becomes, 
in the thermodynamic limit, 

^        [r(i/2)J \2.T)   J 

with the prefactor in square brackets reducing as it should to 2, 27r and AT for d 
= 1, 2 and 3, respectively. Defining the number density in d dimensions through 
n = N/Ld, (1) with T = To NQ ~ 0 and fj. ~ 0 becomes an elementary integral easily 
evaluated in terms of the so-called Bose integrals [43] (with z = e.»-lk*T the so-called 

activity) 

where ((<r) is the Riemann zeta-function of order a. Solving (1) for Tc then gives 

2 

Tc = 
2irh 

mkß 

n 

C(«*/2)J 

2/rf 

(5) 

This result is formally valid for all d > 0. Note, however, that for 0 < d < 2, Tc = 0 
since ((a) = oo for c < 1, the case <£ = 2 dimensions giving the celebrated harmonic 



series ((1) = 1 + 1 + | + • ■ • wl"ch is well-known to diverge. Clearly, for d = 1, the 
series C(l/2) = l+~7* +"7" + • • • diverges even more severely, etc. All this is consistent 

with the well-known fact that BEC does not occur for quadratic-dispersion-relation 
bosons for d < 2 dimensions. For d = 3 dimensions (5) becomes 

2*h2n2/>       ^ 3.31ft2n2/3 

c " mfcB[C(3/2)]2/3 ~       rnkB      ' l 

since ^(3/2) ~ 2.612. This is the familiar Tc-formula for BEC in 3D, a phenomenon 
finally observed experimentally [44] in ultra-cold alkali-atom gas clouds only recently. 

3. Cooper-pair dispersion relations 

Let fermions with kinetic energies ek = h2k2/2m* and ek> = h2k'2/2m* interact 
pairwise via the BCS model interaction 

_ f -V    if  EF - hujD < ek, ek> < EF + hujD (7) 
kk' ~ \ 0 otherwise, 

with V > 0 and hup the maximum energy of a vibrating-ionic-lattice phonon, where 
Vjbfc' is the double Fourier transforms of the interaction, and m* the fermion effective 
mass. 

The total energy ET eigenvalue equation for a (Cooper) pair of fermions inter- 
acting via the BCS interaction model and immersed in a background of N - 2 inert 
spectator fermions in a spherical Fermi surface (in k-space) of radius kF is given [45] 

by 

1 = V^'[2efc - {ET - tfK2/*™*)}-1 (8) 
k 

where KK = 7i(ki + k2) is the center-of-mass momentum of the pair, while hk = 
Ä(ki — k2)/2 is its relative momentum. The prime on the summation sign denotes 
the conditions 

kF < k, = |k + ^K| < {k2
F + k2

Df'
2, 

kF<k2 = \\L-\K\<{k2
F + k2

Dyi2 (9) 

where K2k2-)/2m* = KUD, with HUD the Debye energy. Setting ET = 2EF - Ajf, 
the pair is bound if AK > 0 and (8) becomes an eigenvalue equation for the pair 
(positive) binding energy AK- For K = 0 (8) then becomes 



1 = r?12£i_2£F + Aol-1 = W 2._**+A.. do) 

from which one immediately obtains for the K = 0 pair binding energy, exact in 2D 
[as well as in ID or 3D provided that hup <C EF SO that (7(e) ~ g(EF), a constant 
that can be taken outside the integral], the familiar result 

A° = e2/3(E,)V _ ! > (U) 

where g(EF) is the density-of (fermionic)-states for one spin, evaluated at the Fermi 
surface. Finite-temperature BCS theory, on the other hand, gives the Tc formula 

rc = 1.130De_1/A (12) 

where A = g(EF)V < 1/2. Since QD ~ 300K, the critical temperature (12) is at 
most about 46K. This has been dubbed the "phonon barrier". Since actual super- 
conductors are now known to have Tc < 164K, the BCS "phonon barrier" of 46K 
has prompted many workers to search for non-phonon mechanisms such as excitons, 
plasmons, magnons, etc., that can substitute sizably larger values for the tempera- 
ture scale QD in (12), and thus lead to higher Tc's. Note that since (11) yields only 
A0 < UK (for A < 1/2 and QQ — 300K) compared with the total rest mass of two 
electrons which is ~ 1010K, a Cooper pair is very weakly bound indeed when com- 
pared, say, with the deuteron for which these two energies are, respectively, about 2 
MeV and 2,000 MeV. 

For K > 0 and d = 2, eq.(8) reduces to 

1 = — /       <ty / d£ £[ÄK + 2{1+V)K
2
-2+2£

2
}-

1 

17   Jo J[l-K3{l+v)3ia2 4>]1/2 + ^+")1/2cos<i) 
(13) 

where A = g(EF)V is a dimensionless coupling constant, g(EF) = L2m*/2-KK the 
2D density of states; £ = k/kF; K = K/2(k2

F + k2
D)
ll2; Ä« = AK/EF; v = 

KU>D/EF = kp/kp. For small K, one obtains from (13) 

2 \( 1 + „W2 + e2/Al 
A* —-   Ao   - -U   +VM     1 KVFK + °(K)- W A:—0 IT        e2lx — 1 

which for weak coupling A —* 0 reduces to 

A*  >   A0--hvFK + O(K2). (15) 
K—0 TV 

Figure 1 compares the linear approximation (14) to the exact dispersion relation 
obtained numerically from (13), for the specified values of A and v. Indeed, the 
linear approximation is very good for moderately small A and v over the entire range 
of K values for which Ajf > 0. 



For d = 3, assuming v « 1 and the 3D density of states g(EF) = {Lz/ir2K ) 

y/m*3EFß eq- (8) becomes 

f* -[l + i/-/e2(l + i/)sin2 tf>]'2-/c(l+i/)2 cos <j> 

1 = 2A / 2 dtsini / , . #£2[Ä(C+2(l+I/)*
2-2+2£2]-1 

Jo </[l-K
a(l+i/)sins0]'i+*(!+")■* c°s0 

(16) 

which for small K, assuming the weak-coupling expressions Ä0 ^ 2ue  2/A, gives 

4/i Vl - i/e-2/A7rT^(2e-2/A + i/e"2/A + 1) 
AK  ► Ao - e4/A 

Ä--0 [e2/AJ/{lnA + ln5} + i/ln(^5) + 2e2/Av/r3^e327Ä] 

,        —— ; -hvFK + Q(K2) (17) 

where A =    xA+^ - Vi-^^j^   and ß = i + y/x-^i^^  For „ « i, A - 0 and 

jf _► 0 (17) reduces to the result cited without proof in [25], namely 

A*  Au-hvpK + OiK2). (18) 

Results in 3D are qualitatively similar to those in 2D illustrated in Fig. 1. 

4. BEC of linear-dispersion-relation bosons in any dimension 

Fujita and co-workers,[24] (cf. Ref. [43], p. 211) have shown that BEC ia 
possible in 2D for bosons with a linear, instead of the usual quadratic, dispersion 
relation. Photons and phonons are examples of such bosons but, however, are non- 
permanent (i.e., non-number-conserving). Cooper pairs do not obey the standard 
Bose commutation relations but can be considered as "bosons" (called "pairons" in 
[25]) since they obey the Bose-Einstein distribution function for a given center-of- 
mass momentum but all compatible relative momenta. A detailed proof of this is 
found in [21] chapter 9, but is also clear from the following. If n^ is the occupation 
number, 0 or 1, of a fermion in state ki, the occupation number for a singlet Cooper 
pair will be T»kiTnlc2i and continues to be 0 or 1. Alternately, a given singlet pair can 
be characterized by k and K instead of by ki and k2, in which case the occupation 
number is say, Af^ K = 0 or 1 again. Finally, the occupation number of a pair with 
specific K is then NK = £kMc,K = 0,1,2,... ,QED. 

A Cooper pair is a pair of fermions bound just outside the momentum-space 
Fermi surface enclosing N — 2 background, inert, spectator fermions of the JV-fermion 
system. It has partner wave vectors ki and k2 which may or may not add up to a 
zero center-of-mass wave number K = ki + k2. From (18), such a ("bosonic") pair 



has an excitation energy which is linear [25] in K for small K (long wavelength limit), 

namely, 
1 

eK = Ao - A*r ——-* -vFhK, (19) 
it —+0     2t 

which is valid provided the coupling is small, where A^ is the (positive) binding 
energy of a Cooper pair with net center-of-mass momentum hK, and vp is the Fermi 
velocity defined by EF = h2k2

F/2m* = \m*v2
F. 

Although it has been traditionally argued, correctly, in the literature since 1957 
that K = 0 Cooper pairs are overwhelmingly tighter-bound that K > 0 pairs, Fujita 
and co-workers [24] conjecture that it is precisely the latter pairs that pre-exist at 
T > Tc and that drive BEC at T = Tc. Indeed, the number of Cooper pairs with 
a specific K > 0 is proportional to a number which is less than (because of finite- 
temperature smearing effects at the Fermi surface) the overlap volume in k-space 
swept out by all possible vectors ki and k2 joined head-to-tail as in Figure 2, but 
both head and tail within the energy-shell fiuo, to give a specific K. This latter 
overlap volume VK is just 

VK =  f d3k9(\K/2 + k| - JfeF)0(|K/2 - k| - Jfcjr) 

*( V^F +kD~ lK/2 + k|)fl(|K/2 - k| - y/kF + kl). (20) 

This integral is exact, though tedious [46], and comprises four distinct regions in the 
interval 0 < K < 2y/kF + k2

D, see below. For K = 0 this becomes the volume of the 
spherical shell, namely 

V0 = (47r/3)JfcJ.[(l + u)i -1]. (21) 

Let K = K/2^kF + k2-) = K/2kpVl + v-   The fractional number of Cooper pairs 
with a specific value of K, to those with K — 0, will then be somewhat less than 

^/y° = J1+^2  J1 ~ t1 + I/)"3/2 + *3 " W><2 + VW + ^ [(1 + up - 1] 
if  0 < K < (1/2)(1 - l/VT+u) 

[Zu2 /16/c(l + i/)i 0- + ")        ro..2 
! [(i + ^-i] 

if   (1/2)(1 - l/y/TTZ)   <   K<   1/Vl + u 

= ^5 [-1 + (3/16)i/2/(«v/TT^) + (3/2)«vTT^ - (1/2)(1 + v)22 K3} 
[(1 + u)i - 1] 

if l/VTTu' < « < (i/2)(i + l/Vi +?) 

=      (1 + ?*      [1 - (3/2)« + (l/2)/c3] 
[(1 + ^ -1] 

i/  1/2(1 + 1 vTTv)  <«<!• (22) 



Finally, it is clear from Fig. 2 that 

VK/V0 = 0     if   K > 1. (23) 

These upper bounds are exhibited in Figs. 3 and 4 for different values of v = 
QD/TF = kjj/k2

F, including the value of v = 3060 appropriate for the low-carrier 
concentration (~ 1015cm-3) superconducting semiconductor SrTiÜ3 doped with Zr 
[47]. For v = oo the problem reduces to that of the overlap volume of two solid 
spheres [48], p. 28, namely VK/VQ = 1 - |K + |K3

, to which the last expression 
of (22) reduces when v » 1. In general, note the (small but nonzero) fraction of 
K > 0 pairs to K = 0 pairs, particularly for small v. 

Nonetheless, the premise of Refs.[22, 23, 24] is that, without abandoning the 
phonon mechanism modeled by (7), superconductivity is really a BEC in either 2D 
or 3D, of excited (K > 0) Cooper "pairons" pre-existing above Tc. At T = 0 all 
"pairons" are at rest (K = 0), while a mixture of both kinds (K = 0 and K > 0) is 
present for 0 < T < Tc. The result (19) is correct in 3D. For d dimensions we have 
the general "excitation energy" 

eK = A0 - AK  ► a(d)vFhK (24) 
iv —-»0 

where [49] o(l) = 1, o(2) = 2/TT and o(3) = 1/2. Using (24) instead of e* = h2k2/2m 
in (1) and performing the integral implied by (3) one obtains (for iV0 ~ 0, \i ~ 0) the 
weak-coupling Tc-formula in d space dimensions 

_ a(d)vFh 
■ c 

kB 

i/rf 

(25) 

Since C(l) = T2
/6 ^ 1.64493 and £(3) ~ 1.20206, this reduces to the Tc formulae of 

Refs. [22, 23], for 2D and 3D respectively, namely Tc = 1.244ÄA:B
_1

VFTI
1/2

 in 2D 
and Tc = LOOShkB^vpn1/2 in 3D [except that the coefficient 1.244 in 2D should 
replace the coefficient 0.977 of Ref. [22] since a(2) equals 2/TT in 2D instead of the 
1/2 mistakenly assumed there]. Note from (25) that Tc > 0 for d > 1, a result that 
might conceivably be relevant in understanding quasi-lD organic superconductors 
[50]. Organic superconductors comprise (1 + e)D materials such as the Bechgaard 
salts, (2 -(- e)D materials like the ET salts and fully-3D materials such as the alkali- 
and alkaline-earth-doped fullerene systems called "fulleride" superconductors [51]. 
The (1 + e)D and (2 + e)D compounds consist of coupled parallel chains and planes, 
respectively, of molecules. 

The large dot in Figure 5 on the d = 3 ordinate denotes the previously men- 
tioned BEC value of Tc, in units of Tp, for a 3-dimensional fermion gas in which 
we imagine all the fermions paired into quadratic-dispersion-relation bosons, i.e., (6) 
with n = np/2 and m = 2m*, with np = kp/Zir2 the 3D fermion-number density. 
In d-dimensions, using (3) for the number of fermions NF = 2 ^k d(kp — k) one 
obtains np = kF/2d~2Trd/2dT(d/2). On the other hand, the number of bosons n 
actually formed under interaction (7) is g{Ep)TuoD^ where g{e) = (L/2Tr)dddk/de = 

(m*/2irk2)d/2. Ldei~1/Y(d/2). Thus, instead of the upper bound n/nF = 1/2 used 
before, one really has only n/np = dv/A.  Using this for n/np we have plotted (5) 



and (25) [assuming a(d) = 1] in units of Tp, vs. d in Fig. 5 (for the special case 
v = 10~3 appropriate for conventional superconductors). Both curves will be raised 
somewhat for v values appropriate for cuprates, namely, 0.03 < v < 0.07. 

5. Zero-sound phonons, plasmons and Cooper pairs contrasted 

Cooper pairs are entities distinct from zero-sound phonons or plasmons since the 
former: a) are bounded in number, and b) carry a fixed constituent-fermion-number 
(namely two), while phonons or plasmons do not share either property. 

Fig. 6 compares and contrasts them in the longwavelength limit (K —* 0). The 
dashed quadratic curve is the plasmon dispersion relation [48], p. 180, 

uK = uP[l + 1(K/KTF)2 + ■■■} (26) 

in the "ring (RPA) approximation" valid for r„ = ru/a0 = (If-up)'1/3/(h2/me2) << 
1, where r0 is an average electron spacing, np = kp/3ir2 being the electron number- 
density, ao the first Bohr radius h2/me2 with m the electron mass, while the plasmon 
frequency is up = y/Arrnpe2 /m and the "Thomas-Fermi inverse screening length" is 

KTF = y/^TTTipe2 /EF with EF = h2kp/2m as before. The dot-dashed curve is the 
weak-coupling zero-sound phonon dispersion curve for repulsive interactions between 
fermions at T = 0, and is given by [48] p. 183, 

uK ~ [1 + 2e-{~2*2h2ljnkFV^ + 2)}vFK (27) 

for y(0) << h2/mkF, where i/(q) = / (i3re-,q'ry(r) and V(r) the (repulsive) in- 
terparticle interaction potential. The slope of this straight line rises as coupling is 
increased, and assumes the form 

uK ~ [u(0)/3Tr2(h2/mkF)}^2vFK (28) 

for 2^(0) >> h2/rnkp- Note that (28) can be rewritten as 

UK ~ ZTT2(h2/mkF)VFK (29) 

and becomes the plasmon frequency squared u2
p if u(K) is taken as the Fourier 

integral of the Coulomb interaction, Atre2 /K2. 
On the other hand, for attractive interactions V < 0 between the fermions one 

has the so-called "Anderson mode" [52], 

uK~[l-4g(EF)\V\}±=vFK (30) 
v3 

in the weak-coupling limit, which is shown as the dotted curve in Fig. 6. Finally, the 
weak-coupling Cooper pair dispersion relation (19) is represented by the full curve. In 
2D, the Anderson mode (30) carries [53] a factor \j\pl instead of the 1/V^ of 3D; it 
thus also lies higher than the Cooper pair dispersion relation (15) since l/-\/2 > 2/x. 
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Using the computer-algebra packages MATHEMATICA and MAPLE, we have 
verified that the K2 term in both 2D (15) and 3D (18) diverges in the weak coupling 
limit; curiously, this behavior also occurs for the plasmon, since the quadratic term 
in (26) can be written as KK2/2MP in terms of a "plasmon mass" Mp. This mass 

my2> 
MP  ~ KK$.F/ü>P T]r -^* 0, (31) 

so that it also vanishes in the weak-coupling (e —► 0) limit, in perfect accord with the 
fact that (zero-) sound phonons are massless. 

6. BCS ground state ä la Davydov 

A surprising property of the BCS theory of the ground (T = 0) state of a 
many-fermion system interacting via the model potential (7) is that the energy shift 
of the superfluid state Es with respect to the normal state EN is, /or any coupling 
strength, just the total energy of an ideal gas of bosonic Cooper pairs. This astounding 
conclusion had not been adequately stressed, to our knowledge, before Davydov [54] 
(see also Ref. [23] as well as in Refs. [30]). It follows directly from the well-known 
result [55] for the energy shift between the superconducting (S) and normal (N) total 
many-body energies (per unit volume) 

1 2e2 + A2 

2 y/e2 + A2 
(32) 

where fi is the system volume, g(Ep) is defined as in (11), and A = hu:D/ sinh[l / g(E F)V] 

is the BCS gap energy which is distinctfrom the binding energy (11), both being valid 
for any coupling. As with Eq. (11), in arriving at (32) only huD < Ep has been 
assumed—not weak coupling. Recall, however, that in 2D the assumption hu>D <^ Ep 
is superfluous, since then g{Ep) is a constant independent of Ep. The integral (32) 
can be performed exactly [55], and gives 

*S^Z» = g(EF)(1u,D)2 
I-1/1 + (A/RWD)

5 (33) 

=-[9{Ep)^D] e2l^v _x (34) 

= -n0Ao  > - \g{EF)*2, (35) 
A-»0 2 

where A was eliminated in the second step, where g(Ep)h(jj£) is precisely the pairon 
number density n0 at T = 0, provided TVJJD < EF, and use was made of (11) in 
the last equality. Ironically, (33) and (34) are found in Ref. [55], but not the all- 
important, remarkably simple, and far-reaching equality (35) implying that the BCS 
ground state corresponds precisely to an ideal gas of composite bosons embedded in 
an ideal gas of unpaired fermions, for all coupling.   The final expression in (35) is 
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the well-known and familiar weak-coupling [A = g(Ep)V < 1] result, where A is 
again the BCS gap energy. Note the crucial difference between A and A0 (which in 
weak coupling reduce to 2Äu>£je-1/A and 2Äu;De~2/A, respectively) that was required 
to arrive at (35), and that is rather frequently neglected in the original and in the 
textbook literature on the subject. This striking conclusion about the ideal pairon 
gas—though not self-consistent since even at T = 0 BCS predicts a smeared (not 
sharp) Fermi surface—supplements the more common interpretation of the BCS ex- 
cited states as an ideal gas oifermionic ("bogolon") excitations—a picture, however, 
valid only in the limit of weak coupling. Note that weak coupling A = g(Ep)V < 1 
is distinct and unrelated to the limit hu>o "C EF- 

Besides striking, the conclusion that the BCS ground-state is an ideal (i.e. inter- 
actionless) gas of Cooper pairs embedded in an ideal gas of (unpaired) fermions at all 
couplings, is remarkable because it holds regardless of how severely the pairs overlap. 
At weak coupling pairs will individually be huge and overlap considerably; for strong 
coupling pairs are small and well-separated. Within the BCS-Bose crossover picture 
[32] these two extremes are respectively known as the BCS and Bose (or BE) limits. 

In essence, therefore, BCS theory is an elegant generalization to two particles of 
the Hartree-Fock (one-particle) theory of a many-particle system, both being funda- 
mentally "mean-field" theories. 

7. Four-fluid statistical model in 2D 

In this section we merely sketch a 2D model to be discussed in greater detail by 
N. J. Davidson in his contribution to this workshop, and which is motivated by the 
Davydov interpretation of the BCS ground-state just discussed. * 

The total number of fermions N = L2k2
Fl2ir equals the number of unpaired 

fermions JVi, plus the number of pairable ones JV2, where N2 = 2g(Ep)n^D with 
g(Ep) = L2m*/2irh2 as before. At finite temperature let N2o(T) be the number of 
pairable but (because of thermal pair-breaking) unpaired fermions; this is given by 

ttoCO = 2 /"""""      *ff        ;   /? = (*,T)-\ (36) 
JII — HUD 

if fj.2 is the fermion chemical potential of the unpaired but pairable fermions. Since 
in 2D g(e) is a constant, the integral is exact so that 

The relevant number equation is then 

N2 = iV2o(T) + 2[JVB,o(T) + NB,K>O{T)) (38) 

where NB,Q(T) is the number of ("bosonic") Cooper pairs with K = 0 at temperature 
T, while NB,K>O{T) the number with K > 0. The latter in turn is just 
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NB,K>o(T) = £ [eW°'"W-2^ - I]"1 (39) 
K>0 

where 
eB<K(T) = 2/x - A*(T) (40) 

is the (thermal) average total energy of a Cooper pair, in analogy with the T = 0 
equation ET = 2EF — &K introduced just below (9). The cutoff K0 in (39) is denned 
as AK0 = 0 and is illustrated in Figure 1. The T-dependent Cooper-pair (positive) 
binding energy AK-(T) is given [21], chapter 10, in the 2D linear approximation in 
weak coupling by 

AK(T) ~ A« - eg(T) - -hvFK + 0(K2) (41) 
7T 

where eg(T) is defined as the pairon gaj>, distinct from the quasi-fermion (BCS) gap 
A(T) but alike in that both eg(T) and A(T) are nonnegative and vanish for T >TC. 
The pairon gap e3(T) results from solving the BCS hamiltonian generalized [21], 
chapter 10, to include K > 0 Cooper pairing. Analogous to (15) and (19), one 
can then define a T- and üf-dependent excitation energy £K(T) = Ao — Ajr(T) ~ 
eg(T) + -hvpK allowing one to identify SK{T) — fiß, where /J-B is the bosonic 
chemical potential, with the factor multiplying ß in (39), namely £B,K{T) — 2/*2 = 
EK(T) - fJ-B = A0 - Atf(T) - fiB so that (40) leads to 

/iB = 2(/i2-A*) + A0. (42) 

The BEC transition temperature Tc is then given by fiß — 0 and Nßo(Tc) ~ 0, where 
from (42) [L — \LT. in (37) is just Ao/2. Hence (38) leads to the transcendental equation 

N2 = N20(TC) + 2NB,K>O(TC). (43) 

The last quantity in (43) then becomes, since eg(Tc) = 0, 

where Ä"oi = TTA.O/2KVF in the linear approximation (15) since A/r01 = 0, and 
ßc — l/ksTc. Since for weak coupling Ao — 2huE>e~2/x vanishes, so does KQI, 

allowing the exponential under the integral sign to be expanded to first order, leaving 

AT frr \ £27rA0Tn* Tc .    . 

Note that for quadratic-dispersion-relation bosons one has K2 instead of K in the 
exponential, making the integral in (44) diverge in the lower limit so that Tc = 0 as 
expected in 2D. Since iV2 = 2g{Ep)fujjD, (38) with \i — fj.2 = A0/2 in the log in (37) 
expanded in powers of Ao, gives the Tc equation 

Tc     ~     —VQDTF   -   ... (46) 
Ao—0      7T 
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assuming 0£>/2Tc << 1, the correction term left out tending to reduce Tc. Table 
1 shows values of TC/TF resulting from (46) for three cuprates for which empirical 
0£3 and Tp values are taken from [56]. These calculated TC/TF values are somewhat 
higher than the empirical Uemura [26] range of 0.01 < Tc/Tp < 0.06. 

A factor a further reducing Tc can be introduced and called a "pairon-formation 
suppression factor" (with respect to the ideal spherical, or circular, Fermi surface), 
and has three possible origins, i) Elemental superconductors have partially hyper- 
boloid Fermi surfaces were electron-electron or hole-hole [22, 23] pairons are formed 
via acoustic phonons. Since these surfaces are only small parts of the total Fermi 
surface, a is expected to be quite small, ii) Pairons (either positively- or negatively- 
charged) are formed in equal numbers from the physical vacuum, meaning that the 
density of states for the non-predominant [22, 23] fermions, e.g. "holes" in Pb, is the 
relevant density-of-states entering in (11), thus making a even smaller, iii) "Necks" 
in the Fermi surface are more favorable for pairon formation than "inverted double 
caps" since the density-of-states is larger around a "neck". This feature appears to 
explain why face-centered-cubic Pb has a higher Tc than face-centered-cubic Al. For 
these and possibly other reasons the pairon density no or riß in actual superconduc- 
tors is smaller than that associated with a spherical Fermi surface. On the other 
hand, if the Fermi surface is spherical or even ellipsoidal but in the first Brillouin 
zone as in Na, K or other alkali metals, then a = 0 exactly; this agrees with the 
observed fact that alkali metals remain normal down to absolute zero temperature. 
If a metal Fermi surface is known to contain "necks" and "inverted double caps" (as 
in Al, Pb, Be, W, etc.) such a metal has a finite, nonzero a and hence Tc > 0. An 
accurate determination of a for a specific substance might conceivably be based on 
low temperature specific heat comparisons with ideal Fermi gas values corresponding 
to spherical Fermi surfaces. 

Finally, interactions are expected to further lower Tc, though perhaps minimally, 
as suggested by the slight reduction of Tc in liquid 4He compared with the ideal boson 
gas. 

8. Conclusions 

Bose-Einstein condensation (BEC) Tc-formulae for any positive space dimen- 
sionality d > 0 are readily derived for a pure gas of bosons with either a quadratic 
or linear dispersion relation. For the former one recovers the well-known result that 
Tc > 0 only for d > 2. On the other hand, for the latter Tc > 0 for d > 1. This signifi- 
cant difference has a profound impact in the theory of superconductivity. The reason 
is simply that standard BCS theory can be generalized to include nonzero-center- 
of-mass-momentum Cooper pairs. In general, Cooper pairs propagate with a linear 
energy-momentum dispersion relation, and can thus undergo BEC not only in 2D but 
also for any dimension greater than unity. As a result, robustly enhanced Tc values 
are possible with linear (but not quadratic) dispersion-relation bosons, and the BCS 
"phonon barrier" of Tc < 46K can be "broken" without discarding phonon-mediated 
interactions and without assuming strong coupling. 

Another remarkable conclusion, not entirely new but scarcely mentioned or un- 
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derstood in the literature, is the fact that the BCS ground state describes an ideal gas 
of bosonic Cooper pairs for all values of the BCS interaction model coupling. This 
picture motivates a simple four-fluid mixture statistical model in 2D which continues 
to give enhanced Tc values even in weak coupling. 
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Figure caption 

Figure 1: Exact 2D Cooper-pair dispersion relation calculated numerically from 
(13) for A = 0.5 and v = 10-2, compared with its linear approximation (14). 

Figure 2: Cross-section of overlap volume (cross-hatched) giving an upper bound 
as explained in text to the number of Cooper pairs with a definite center-of-mass 
momentum ÄK, if the pair partners interact via the BCS model interaction (7). 

Figure 3: Overlap volume (20) to (22) of two spherical shells of Fig. 2 as function 
of K, relative to volume when K = 0, for various values of u = ©D/TJT = kj^/kp : 
v = 10-3 applies to conventional superconductors; 0.03 < v < 0.07 to cuprates; 
v = 3060 to Zr-doped SrTi03 [46]; and the limit u = oo refers to overlap volume of 
two solid spheres [48], p. 28. 

Figure 4: Same as Fig. 3 but on a semilog plot. 
Figure 5: Full curve refers to BEC in d dimensions according to (5), while dashed 

curve refers to BEC according to (25) if a(d) = 1 is used, for ®D/TF = 10~3, and 
n/nF = du/A, m = 2m* as explained in text. The dot at d = 3 refers to (5) with 
n/np = \ and m = 2m*, namely a//fermions paired. Light and dark crosshatchings 
comprise Uemura plot [26] data for exotic and conventional superconductors, respec- 
tively. The thin horizontal line marked BCS "phonon barrier" corresponds to Eq. 
(12) with A < 1/2, namely TC/TF < (l.lZe-2)QD/TF ~ O.1530D/Tir for the case 
OD/2V = 10-3. 

Figure 6: Dispersion curves for: the plasmon (26) (dashed); the weak-coupling 
(repulsive interaction) zero-sound phonon (27) (dot-dashed); the weak-coupling (at- 
tractive interaction) Anderson mode (30) (dotted); and the weak-coupling 3D Cooper 
pair (18) (full curve). 

Table Caption 

Table 1: BEC critical temperatures Tc, in units of the Fermi temperature Tp, 
predicted by (46) in the four-fluid statistical model discussed in text, for three 
cuprates. Data on Tp and QD 

are taken from [56]. 

Table 1 

TF{K) QD(K) TC/TF   (Eq. 46) 

0.17 to 0.19 
0.21 to 0.24 
0.19  to  0.29 

YBaCuO 2190-2390 368 
TICaBaCuO 1640-2020 458 
BiSrCaCuO 580-1360 246 
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MATHEMATICAL SIGNATURES OF PLASMA INSTABILITIES 
IN LOW DIMENSIONAL SOLID STATE SYSTEMS 

P. Bakshi and K. Kempa 

Department of Physics, Boston College, Chestnut Hill, MA 02167, USA 

1.   INTRODUCTION 

Plasma waves and instabilities have been extensively studied for gaseous plasmas 
for over four decades now, many of these phenomena have been experimentally observed 
and some have led to device applications as well. Analogous phenomena in solid state 
plasmas have been much less explored. Early attempts in this direction were unsuccessful 
due to the high collisionality of solid state systems. The advent of molecular beam epitaxy 
and other technological advances have made possible the creation of low dimensional 
systems (quasi two dimensional electron gas layers, quasi one dimensional quantum wires) 
with much reduced collisionalities, raising again the question, whether plasma instabilities 
can be generated in such systems, and if so, whether they can be utilized for practical device 
applications. 

This is an important issue, both scientifically and for technological applications. If a 
nonequilibrium carrier distribution is (somehow) created, there are three distinct channels 
available to the excited carriers for relaxation to equilibrium: phonons, photons and 
plasmons. While the first two have been studied extensively, the third possibility has not 
received adequate attention. Plasmon generation, which is the result of net downwards (in 
energy) single particle transitions arising from a population inversion in the carrier 
distribution function, can indeed be a faster channel for relaxation in some situations, and 
significant energy transfer into growing plasma waves (plasma instabilities) may be possible 
under suitable conditions. This mode of energy relaxation will then be the preferred route 
for the carriers to lose their excess energy. The ensuing buildup in plasma wave (plasmon) 
energy can be directly (through dipole charge oscillations in a bounded plasma) or indirectly 
(through a grating coupler) converted into electromagnetic radiation at the frequency of the 
plasma mode, leading to radiation emission devices. For typical low dimensional 
semiconductor systems, these frequencies are in the terahertz range (meV in terms of 
energies: millimeter or submillimeter waves). Development of compact, coherent radiation 



sources in this range would fill an important gap, and would be relevant for various 
scientific and technological applications [1]. 

We have examined the problem of generating plasma instabilities in low dimensional 
solid state systems for some time now [2-14], and shown theoretically the feasibility of 
these phenomena in a variety of situations through detailed calculations at the level of 
Random Phase Approximation. Here we ask the question whether some common features 
emerge, that presage the possibility of plasma instabilities. In classical plasmas, the 
mathematical signature for plasma instabilities is the Penrose criterion based on the global 
properties of the velocity space distribution function. We have generalized this criterion to 
quantum plasmas [13] in terms of a suitably averaged distribution function (Section 2). This 
generalized criterion explains many of the features found in our earlier studies of uniform 
systems [2-11] and can even be extended to periodically modulated systems [12]. For 
bounded systems with discrete energy levels, the resonant energy denominators play a major 
role in determining the criteria for plasma instabilities, and a different approach is required. 
The plasma mode frequencies are shifted from the inter-level frequencies by the collective 
effects (depolarization shifts). When an adequate population inversion is maintained, and an 
allowed downward transition frequency is slightly higher than an allowed upward transition 
frequency, a resonance of the depolarization shifted downward and upward frequencies 
occurs leading to a plasma instability. A new formalism (Energy Level-Pairs Formalism) is 
developed in Section 3 to analyze the Random Phase Approximation response of the system. 
This approach makes clear the basic mechanism for the generation of the plasma instability. 
It also shows how this criterion can be generalized to a group of levels (minibands in 
quantum wells or superlattices), and even to continua of levels, thereby providing a uniform 
explanation for plasma instabilities we have explored in several solid state systems [2-14]. 

2.   CRITERIA FOR PLASMA INSTABILITIES 

Plasma is a collection of charged particles where Coulomb interactions lead to 
collective behaviour. At the simplest (hydrodynamic) level of description, the plasma state 
is described [15] by the fluid density, velocity and the pervading electric field, and the 
corresponding perturbed quantities ni, vi and Ei undergo oscillations proportional to 
eiq«x e-i(ot) representing plasma waves. Equations of motion and continuity, along with 
Poisson's equation relate these variations and provide the dispersion relation (D = co(q) for 
the plasma mode. The unperturbed n0, v0 and E0 need not be uniform, and a non 
equilibrium state can lead to complex frequencies with *y(=Imco) > 0 implying a growing 
wave amplitude proportional to eY *; this is the manifestation of a plasma instability. 

The hydrodynamic description does not provide for wave particle interactions; for a 
proper description thereof one must employ the more general distribution function approach 
[15-18] in phase space with f = f(x, v, t). The Vlasov equation for f, supplemented by the 
Poisson or Maxwell equations, leads to an effective dielectric function 



e(q,(ö) = 1 - vqx(q,co), (1) 

where vq is the Coulomb factor and x(q>G>) the susceptibility function. The solutions of 
e(q,oo) = 0 represent the allowed plasma modes co = co(q), and if co is complex with y > 0, 
that plasma mode is unstable. The dielectric function for a classical 3D uniform equüibrium 
plasma is given by [16] 

e(q,<o) = l-^ f«*ld,, (2) 
<T  J   qu - co 

L 

where fG(u) is the equilibrium (Maxwellian) effective distribution function [16] as a function 
of u, the velocity component in the direction of q, obtained by integrating out the 
perpendicular velocities. This leads to the standard plasma mode co2 = C0p2 = 47tne2/m for 
small q with a small imaginary co, (y < 0), representing Landau damping due to the wave 
particle interactions [16]. 

For a nonequilibrium plasma with a two peaked distribution function f0(u) (e.g. as 
shown in Fig. 1 of Ref. 13, maintained by a net current), a. population inversion occurs 
which allows a transfer of energy from the particles to the plasma wave giving rise to a 
plasma instability. The particles faster than the wave (v > co/q) impart energy to the wave, 
the particles slower than the wave (v < oo/q) gain energy from the wave, and when the faster 
particles have a larger population than the slower ones (3f/3u > 0, for some u > 0) a plasma 
instability may become feasible. Thus the shape of f0(u) determines whether a plasma 
instability will occur. 

There are two well known theorems in classical plasma instability theory [16]. (1) 
Gardner's Theorem: If for all directions q, the effective distribution function decreases 
monotonically away from its maximum at u = 0, (u(3fo/9u) < 0), such a plasma remains 
stable. (2) Penrose Theorem: For a given f0(u), with one minimum at u0, instability occurs 
if and only if 

J fo(uo)-fo(u)du<0 (3) 

(u - u0)2 

Gardner's theorem rules out plasma instabilities for single peaked distributions. Penrose 
criterion (3) provides a quantitative method for an a priori determination of whether an 
instability will occur, based on the shape of the effective distribution function. A simple 
corollary is that a distribution function with a velocity gap (no particles in some velocity 
range, i.e. fo(uo)=0) will necessarily be unstable. 

For quantum plasmas, the Random Phase Approximation (RPA), which provides a 
very good description for most systems, leads to an effective dielectric function 



^.i-^i^^'-y. (4> 

where q = hq, f(p) is the momentum distribution function and ep = \P-I2m.. The structural 
similarity to the classical expression (2) is evident, and can be made more precise by a 
simple construction [13]. Rewrite the sum in Eq. (4) by shifting p -> p - (q/2) as 

2 f(p + q/2) - f(p -  4/2) (5) 
p       ep+qV2 - ep-q^/2 - Ä© 

The denominator is simply 

2^ {(p + q/2)2 - (p - q/2)2} - ha = fc(vq - G>) = Ä(qu - ©), (6) 

where p = mv and u is the velocity component in the direction of q. The numerator can be 
re-expressed in terms of a q-averaged distribution function by defining 

1/2 

fft(p).    Jd£f(p + Sq). (?) 
-1/2 

Then 
? 1/2       -) 

q-f-fqXp)-    Jd^f(p + ^q) = f(p+  q/2)-f(p-q/2). (8) 
dp -1/2     dq 

Thus Eq. (4) reduces to 

4n:e2 v        dp 
e(q,CD) = 1 - —TLi — — 

qz   P     ft(qu - (ö) 
(9) 

Taking into account the different normalizations of f(p) and f0(u), Eq. (9) reduces precisely 
to Eq. (2). This leads to the general result 

3Cquant[f(P)] = XclasstfqXP)] > (10) 



where f<f(p), Eq. (7), is just the original momentum distribution f(p) averaged 
symmetrically over the range q = hq centered at p. While the derivation of Eq. (10) above 
was for 3D, the same result is obtained in 2D and ID systems as well. 

With this mapping, it is now possible to infer the properties of a quantum plasma 
from those of a classical plasma with the q-averaged distribution. In particular, the theorems 
of classical plasma theory can now be applied to determine the instability criteria for 
quantum plasmas. Since the mapping is q-dependent, a quantum plasma which is unstable 
for small q, may become stable for large q, as the corresponding classical distribution has 
less pronounced minima and maxima due to the extended averaging. This explains why in 
all our earlier studies on a variety of systems, the instability disappeared beyond some 
characteristic qmax. Also, it becomes apparent on reviewing our previous scenarios [2-12] 
for obtaining instabilities that those were different ways of achieving two peaked 
distributions in velocity space. Where the peaks were close, and the minimum between 
them was shallow, the Penrose condition (as applied to the q-averaged distribution) was not 
satisfied. Increasing the separation between the peaks by increasing the relative drift 
velocity led to the onset of instability at some threshold drift, usually of the order of the 
Fermi velocity vp. This is easy to understand in the light of the discussion in this section: 
increased separation of the two peaks deepens the minimum, and when the two peaks are 
separated by a drift velocity exceeding their combined spread (typically of the order of vp), 
the Penrose condition is satisfied. Increasing the drift increases the range of q over which 
the instability persists. 

The Penrose criterion, and its generalization to quantum plasmas, are restricted to 
uniform systems. Periodically modulated systems with small density modulation can be 
approximately described in terms of effective velocity distributions as in [12], and the 
Penrose type criteria can be applied to these distributions. Bounded systems, which give 
rise to discrete energy levels, however, require a different approach. Plasma instability 
criteria for such systems are discussed in the next section. 

3.   ENERGY LEVEL PAIRS FORMALISM 

We have shown elsewhere [13,14] the advantage of using bounded systems (or 
quasi bounded systems such as finite length quantum wires or finite width slabs or 
superlattices) for generation of plasma instabilities. Bounded systems have discrete energy 
levels, and the considerations of the previous section, based as they are on continuous 
distribution functions, are not applicable. Nevertheless, can one obtain some general, a 
priori criteria for plasma instabilities in such systems? It is clear even from the expression 
for the dielectric function for uniform systems, Eq. (4), that energy denominators will play a 
strong role for systems with discrete energy levels and the susceptibility will become large 
for frequencies which resonate with the interlevel separations. We develop in this section a 
formalism, which explicitly recognizes the role of interlevel separations, and which 
demonstrates what the essential criterion is for achieving an instability in such systems. 
This approach is then generalized to quasi bound systems and to systems with continuous 



energy spectra as well, thus providing a unifying explanation for plasma instabilities in all 
systems. 

The density response to an external potential perturbation at frequency co, 
Ve(r,t) = Ve(r)e-iG)t is given in the RPA by [13,14], 

8p(r,G» = Jdr,Xo(r,r,;cD)VT(r,,(ö), (11) 

where %0 is the single particle susceptibility, 

Xo(r,r';(D) = 2 X X ^JJSL v|/|(r)w(r)¥e*(r')vi/e(r'). (12) 
e e' e-e'+fcco 

Xo is determined by the single particle energy levels e and wave functions \pe(r) of the 
ground state (i.e. the unperturbed state, Ve = 0) of the system. The occupation numbers fe 

are prescribed by the external conditions imposed on the system. For example, for the 
equilibrium situation at temperature T = 0, all fe = 1 for e < £F the Fermi energy and fe = 0 
for all £ > £F- Non equilibrium distributions {fe} can be generated, and maintained in a 
steady state ground state, by selective injection and extraction techniques [14] or by applying 
an external electric field, etc. Plasma instabilities can arise for suitably arranged non 
equilibrium populations {fe}. The total potential Vj = Ve + VH, where VH is the Hartree 
potential, 

V*W>-*Jdr-?g£#. (13) 
IV 

K being the dielectric constant of the material. This system of equations, (11) to (13) has to 
be solved self consistently, and those frequencies that make the response 8p(r,(D) 
exceptionally large are the normal modes of the system. These are the oscillations that can 
arise spontaneously in the system. If co is complex, and y > 0, this will be a plasma 
instability with density response and other related quantities growing in time as eX1. 

Depending on the nature of the system under consideration, these standard RPA 
equations can be solved in a variety of ways. We introduce here yet another point of view; it 
has the merit of explicitly recognizing the importance of the interlevel energy separations, 
and being particularly well suited to answer the question raised at the beginning of this 
section. 

Let us first consider, for the sake of illustration, a system which has only two energy 
levels £i and £2, with corresponding wave functions \yi and V|/2, taken to be real. Then Eq. 
(12) simplifies to 



5Co(r,r';(D) = C2i((ö) ViW^WVlfr'^Cr'). (14) 

n   .  v   4A2i(f2-fi) n~ 
C2l(G))=—~2 j— » (15) 

A21 " C°2 

A21 = £2 - £1 > 0, and h has been absorbed in CO (now measured in energy units). The self 
consistent set of Eqs. (11 to 13) reduces to 

8p(r,o>) = C2i(G>)\|fi(r)v|/2(r) [<1 IVextl 2> + (e*/K) A12L    (16) 

with 

A12 = j Vl(r>2(r') ^rpf dr' dr" • <17> 

Now multiplying eq. (16) by \|/i(r')\p2(r')/lr' - rl and integrating over r' and r leads to a 
linear equation for A12, 

A12 = C2l((D)Gi2,12 [(Vext)l2 + (e2/K) A12], (18) 

with 

Gi2,i2= JviW^WjprFT Vl(r,)V2(r') dr dr'.        (19) 

The explicit solution is 

Ai2(C0) = [ 1 - C2i«D) (e2/K) G12.12]"1 C2i«o) G12,i2(Vext)i2. (20) 

The density response 8p(r,(D) becomes exceptionally large at all r when CO is such 
that the square bracket in eq. (20) vanishes, or 

G)2 = A^ - 4Ä21 (f2 - fi) (e
2/K) G12,i2. (21) 



This is the collective response frequency of the plasma composed of a two level system with 
occupation numbers fi and f2- Eq. (21) is the fundamental equation describing the 
depolarization shift for the energy pair (ei, £2) due to the Coulomb interactions of the 
occupants of those levels. If we absorb the factor (e2/K) into the Coulomb matrix element 
G, it becomes an averaged Coulomb energy which provides a quantitative measure of those 
interactions. It is easy to show that this energy G is positive definite, by using an integral 
representation for the Coulomb factor in Eq. (19), 

e2 f ,     iq • (r - r') = Jdqeiq,(r-r,)vq, (22) 
Klr-r'l 4 

where the specific form of vq depends on the dimensionality of the system, but is positive 
definite in all cases. Then 

Gi2,i2 = J dq vq I<1 leW 2 >|2 (23) 

is also, obviously, positive definite. Thus Eq. (21) shows that for normal population 
distribution (f2 < fi) the plasma response is at an energy 00 > A21, the pair energy 
separation. On the other hand, with population inversion (f2 > fi), co < A21 and the 
depolarization shift is negative. 

What is the physical mechanism behind these depolarization shifts? The matrix 
element and its complex conjugate in Eq. (23) represent a (virtual) plasmon emission with 
momentum q followed by its absorption. The Fourier transformed Coulomb factor vq 

represents the relative probability for this process (at momentum q), and the full integration 
takes into account all possible scenarios. Thus intrapair (virtual) plasmon emission and 
reabsorption is the basic mechanism for the depolarization shifts in a single pair. 

Based on this physical picture, it is easy to see what will happen if more energy 
levels are introduced into the system. Each energy pair, by itself, will create its own 
depolarization shifts as in Eq. (21). But in addition there will be interpair Coulomb 
interactions (coupling different pairs) where the plasmon is emitted by one pair but absorbed 
by another. Thus the consistency condition will be some appropriate generalization of the 
vanishing of the square bracket in Eq. (20), representing the modification of the intrapair 
shifts due to all the interpair interactions. 

Before displaying the general result, let us consider a three levels system, which 
proves to be a paradigm for the generation of plasma instabilities. There are three energy 
pairs in a three level system, represented by (12), (23) and (31) as indices for the quantities 
A, C, A and G in the previous discussion. The self consistency condition leads to coupled 
equations for A12, A23 and A31 and the condition for an exceptionally large response 
5p(r,(D) for any external perturbation leads to a 3 x 3 determinantal condition for the normal 
modes co2. Besides the intrapair elements like Gi2,i2»we a^° have interpair Gi2,23, Gi2,3i 



and G23.31 defining the full response. If we consider the special case where only the middle 
level is occupied (f2 = 1) and the other two are empty (fi = f3 = 0), all entities with index 
(13) drop out. Physically this is so, since the only transitions can be from 2 to 1 or 2 to 3, 
represented by the pair indices (21) and (23). Algebra similar to Eqs. (14) to (20) leads to a 
pair of coupled equations for A12 and A23, and the condition for a large response is the 2 x 2 
determinantal condition 

= 0. (24) 
1 - C21G2L21 " C23G2L23 

" C2lG23,21 1 - C23G23.23 

This provides a quadratic equation for 002, 

(A£ - 4A2lG2l,21 - o)2)(A22
3 - 4A23G23,23 - G)2) - 16A2lA23lG23,2ll2 = 0, (25) 

where A21 = £2 - ei > 0, but A23 = £2 - £3 < 0, and with real wave functions, 

f e2/K 
G23,21 = J drdr'^Wvi/sWipypj^rOVlCr') (26) 

= Jdq vq <2I e«rr I3> <2I e-"rr' ll> = G2i,23- 

Without the interpair processes (i.e. neglecting the last term in Eq. (25) we simply recover 
the two depolarization shifted individual pair modes at frequencies 

©J = raj " 4A2lG2i,2l ; G>23 = A2
2
3 - 4A23G23,23 (27) 

where the down transition frequency is reduced (©21 < A21), and the up transition frequency 
is enhanced (©23 > IA23I), from the corresponding interlevel (single particle transition) 
values. If we can arrange the energy levels so that A21 > IA23I, it may be possible to bring 
©21 and (Ü23 into resonance (i.e. make ©21 = ©23 = ©R) through the collective effects. Then 
Eq. (25) becomes 

(©2 - ©2)2 = I6A21A23 IG23,2ll2, (28) 



or 

co2 = (öl ± 4iA2i IÄ23I IG23,2lU (29) 

since A21 and A23 have opposite signs. This, then, is the essential mechanism that 
generates plasma instabilities. Arrange the energy differences and populations of two pairs 
such that the down transition frequency is larger than the up transition frequency. If the 
collective effects are strong enough to bring them into resonance, Eq. (29) will prevail and 
the root with y > 0 creates the plasma instability. The strength of the instability (size of y) at 
resonance is governed by the interpair processes implied by the Coulomb matrix element G 
of Eq. (26). The emission of a (virtual) plasmon q in one pair coupled with its absorption in 
another pair is the essential physical mechanism for the generation of plasma instability. 

For the general system with M energy levels, there are ^ M(M-l) = N energy pairs, 
labelled by (ij) where i*j and (ij) is the same as (ji). Analysis similar to the preceding special 
cases leads to the eigenmode condition in the energy pair representation, 

det[5ij)W-Gij)WCw] = 0, (30) 

with definitions of C and G analogous to Eqs. (15) and (26), and where the determinant has 
dimension N. By multiplying each column in Eq. (30) by (A^ - co2), we obtain the 
standard form 

det [A£ - G)2)8ij)k^ - Gm CW] = 0, (31) 

where the co-dependence has been made explicit, and C^ = Q^ (Aj^ - co2) does not depend 
on co. It is clear that the number of modes predicted by Eq. (31) is the same as the 
dimensionality N. The density response for any one of these normal modes, co2 = C0n2, is 
given by 

8p(r,con) = I A(ij)(con)(e2/K)C(ij)(con)\|ri(r)\|/j(r) = I 8p(ij)(r,con), (32) 
(ij) (ij) 

which displays explicitly the relative contribution of each pair (ij). The relative weights are 
given by A(ij)(con)C(ij)(con). Thus this formalism is capable of describing the full RPA 
response of any system in a convenient form. The dimensionality is reduced considerably if 
all levels are either completely filled (fj = 1) or empty (fj = 0). If there are M0 occupied 



levels and Me empty levels, the dimension of the determinant in (30) is reduced to N = 
MoMe- 

Significant simplifications occur if the interpair Coulomb energies Gyj^ are small. 
Then a systematic expansion of the determinant in Eq. (31) is possible, 

A.    A 

1+I,       *%*f<f*       +... = 0, (33) 
ij,k/ (ö)y - co2)((ök^ - (D2) 

where the depolarization shifted a? are the analogs of Eq. (21) or (27), and the summation 
excludes (ij) = (k^) and also avoids repetition of terms. If we ignore the higher order terms, 
and resolve the second term into partial fractions, we obtain 

1+1^-7 = 0, (34) 
ii   CO.. - <D2 
J      iJ 

a form reminiscent of the atomic polarizability expression. The coefficients By can be given 
explicitly in terms of the G's and C's. Eq. (34) represents the effective dielectric function 
for the system. It may be noted that there is no plasmon q, nor any dispersion co = co(q) in 
any of these expressions. This is so because a bounded plasma does not admit plane waves 
and thus q is not a characterizing parameter for a mode. The numerical order of the mode 
approximately plays the role of q in a bounded plasma, and in the limit of large sized 
systems, a clear correspondence to the free system limit can be established. In principle Eq. 
(33) can be expanded in the higher order denominators involving ©2, which can all be 
resolved into simple partial fractions (assuming no degeneracies, (Dy * (DM). Then the By in 
Eq. (34) would be replaced by more involved coefficients Dy in terms of chain products of 
the interpair elements (G's). These remarks are only intended to show the generality of this 
approach; the details and practical applications will be provided elsewhere. 

A special case of practical importance for plasma instabilities is that of a finite width 
slab (a quantum well), limited in the x direction to length L, and open in the y and z 
directions. Now the wave functions in Eq. (12) have the form 

¥e(r) = eikyyeikzZ
¥f«. (35) 

The plane waves in y and z directions allow plasmons of specific wave numbers qy and qz 

(sq±) through momentum conservation, and the more general %0 of Eq. (12) can now be 
represented through its Fourier transform 



f -f 
Xo(x,x'; co, qi) = 2lll —£x'Pl qj X'Px,    ^eÄ^A^^'^eM'^ 

ex e; P± ex -ex'+ep±+qjL-ep±+Äö>   Cx      *      **        x 

(36) 

The response at q± = 0 can be related to that of a one dimensional problem, since the 
transverse energies drop out from the denominator and the distributions in the numerator can 
be summed over p±. Thus the formalism discussed above is directly applicable with the 
advantage that the summed f s provide strong collective effects. All the particles with 
different perpendicular momenta respond coherently to enhance various collective effects. 
Strong plasma instabilities can be expected for this scenario, a prediction we have confirmed 
by detailed calculations. All the vertical transitions (q± = 0) between the x-energy levels 
have the same matrix elements and these add up coherently to scale the effective G's from 
their one dimensional quantum well (i.e. finite length wire, Ref. 14) values to much larger 
values for the case of a slab. Thus much stronger plasma instabilities are to be expected 
from the slab systems. 

The same technique of summing the f s over perpendicular momenta can be used for 
small q±, even though the energy denominators are not exactly the same. This remains a 
good approximation for a significant range of q±, since the energy denominators are 
primarily governed by the well separated x-energy levels. 

Extending these approximation techniques a step further, several closely spaced 
energy denominators can be grouped together into an average denominator and treated as a 
single energy pair. This is clearly applicable to minibands in multiple quantum wells or 
superlattices. Even for a continuum of energies such as the two peaked distribution of 
section 2, one can consider that to be an effectively three level system, with the two peak 
energies well occupied and the intermediate energy level (at the velocity minimum) almost 
empty. This three level system will lead to a determinantal condition defining the parameter 
range for a plasma instability. This type of approach, emphasizing the grouping of almost 
similar energy denominators may provide a practical method for a quick evaluation of 
whether a given system will generate a plasma instability. We are already able to relate 
qualitatively the main results of our previous studies [2-14] to simple considerations outlined 
in this section. 

4.   CONCLUDING REMARKS 

In view of the importance of using the plasma instabilities approach (which can also 
be characterized as stimulated plasmon emission or a plasmon laser) to generate 
electromagnetic radiation in the terahertz range, obtaining a priori indications of their 
feasibility is very valuable. We have shown (Section 2) how the classical criteria can be 
generalized to quantum systems described within the RPA. We have also developed 
(Section 3) a new formalism, especially suited to bounded systems, which enables one to 
see the potential for plasma instabilities in such systems. In addition, it provides a unifying 
approach which can explain the main features of our earlier results in several different types 



of systems. The basic, universal criterion that emerges is that the plasma instability is 
created by an interplay of matching up and down transitions. The latter necessarily require 
some population inversion in part of the energy spectrum. The strength of the collective 
effects has to be sufficient to reduce the (single particle) down transition frequency and 
increase the (single particle) up transition frequency to bring them into resonance to create 
the instability. The strength of the instability at this resonance is governed by the interpair 
Coulomb interactions. Grouping of pairs with similar energy denominators into a single 
effective pair with a coherently enhanced interaction strength is permissible, and provides a 
simple explanation of several of our earlier results. This broad understanding makes it 
possible to design systems with appropriate energy and distance scales that enhance the 
instabilities. For example, in a quantum well the energy separations A scale as (1/L2) while 
the Coulomb interactions G scale as (1/L), providing ma priori assessment of the size of the 
system that may generate a plasma instability. It is also clear from this formalism that higher 
temperatures do not create any limitations, in principle, on obtaining plasma instabilities. 
Even broad band population inversion (as is commonly the case in classical plasmas) will 
lead to a plasma instability. The mode is sharp and is not broadened due to thermal effects. 
Essentially, this is so because all the electrons participating in the creation of the plasma 
mode are moving coherently amongst the participating pairs. Further elaborations of the 
formalisms and various applications will be given elsewhere. 
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1. INTRODUCTION 

In this contribution we discuss a few old results on Bose-Einstein condensation 
(BEC), off-diagonal long range order (ODLRO), and pairing, with an orientation to 
coordinate space in order to deal with realistic hamiltonians for strongly correlated 
systems. 

Superfluidity and superconductivity are manifestations of quantum mechanics 
at a macroscopic level. The most direct connection with the microscopic physics is 
through the nature of off-diagonal order in reduced density matrices. With these 
density matrices one can define a macroscopic order parameter or wave-function 
which obeys a Schrödinger-like equation and contains the quantum mechanical phase 
and density information concerning superfluidity or superconductivity. 

It is possible and useful to arrive at this information from the microscopic de- 
scription of the system just as one does when using statistical physics to obtain 
thermodynamic and transport properties of macroscopic systems. In particular, the 
existence of a macroscopic wavefunction describing some of the quantum properties 
of the many-body system is an indication that the macroscopic state depends on 
average on only one or a few coordinates. Information about the multiparticle cor- 
relations can be discarded by tracing out nearly all of the many-body degrees of 
freedom, keeping only the off-diagonal dependence of the remaining few coordinates. 
Thus it should not be surprising that it is only necessary to have the one-body density 
matrix to describe boson superfluidity and the two-body density matrix to describe 
fermion superfluidity. 

In the case of strongly correlated systems, it is advantageous, and sometimes 
necessary, to formulate this in coordinate space. Contrary to a common view, there 



is no serious disadvantage to working in coordinate space representation, and there 
are some additional advantages since the very notions of reduced density matrices 
and the off-diagonal limit are coordinate space concepts. 

2. OFF-DIAGONAL LONG RANGE ORDER IN BOSE FLUIDS 

The relationship between ODLRO in boson fluids and BEC was first shown by 
Oliver Penrose in 1951 by considering the properties of the one-body density matrix 
for a boson fluid [1]: 

Pl(r,r') = (^(r)^(r')> 

where ^(r) is the creation operator for a particle at r, and the expectation value 
is either an appropriate ensemble average at finite temperature or the ground state 
average at zero temperature. Clearly this is the amplitude for the simultaneous 
removal of a particle at r and addition of a particle at r' as long as r ^ r', and 
is closely related to one-body Green functions. The relationship to the condensate 
fraction is given by taking the off-diagonal limit: 

lim    pi(r,r') = i\r0$o(r')$o"(r) , 
|r—r'|—»oo 

where this may be taken as the definition of $o(r) if such a limit exists and $o(r) 
is normalized. The existence of ODLRO is determined by the order of magnitude 
of N0: If No is macroscopic in the thermodynamic limit, then the system is said 
to possess ODLRO, and $o(r) is the macroscopic wavefunction of the system (or, 
more commonly, y/No~$Q(r) is the order parameter of the system). Thus the order 
parameter is of order unity in the thermodynamic limit; equivalently, the condensate 
number NQ is macroscopic, and the condensate fraction (defined by no = No/N for 
an N-body system) is of order unity. This describes the situation for liquid AHe in 
a bulk geometry below the lambda temperature, including the case when there is 
spatial inhomogeneity, leading to a non-trivial $o(r) [2]. 

The macroscopic wavefunction is often exhibited as the solution of a non-linear 
Schrödinger equation, known as the Gross-Pitaevskii or Ginzberg-Landau equation 
when done at the mean-field level or including spatial fluctuations. Such an equation 
for $o may be formally obtained from the full microscopic hamiltonian H by taking 
the following limit: 

lim     (^(r) H iß{r')) . 
|r—r'|—>oo 

However the resultant equation is not terribly practical for our purposes; it appears 
much more useful for strongly correlated systems (especially when they are inhomo- 
geneous) to find pi(r, r') by first solving the many-body problem and then using the 
resultant p\ to obtain $o and NQ by treating pi(r, r') as a non-local one-body opera- 
tor and solving for its eigenvalues and eigenfunctions. The largest eigenvalue is then 
NQ and the corresponding eigenfunction is our macroscopic wavefunction $o(r) [3]. 

The situation is quite different in reduced dimensions at finite temperatures. 
Quantum fluctuations eliminate the possibility of a non-zero condensate fraction in 
one-dimension, and at non-zero temperatures in two-dimensions; with a sufficiently 
long-ranged interaction, the condensate fraction is zero even in the ground-state in 



two-dimensions [4,5]. However superfluidity exists in liquid helium films in spite of 
the fact that the condensate fraction vanishes in the thermodynamic limit (defined 
for films to be the limit as the lateral dimensions diverge). This may be understood in 
terms of the existence of quasi-ODLRO (QODLRO), whereby the off-diagonal limit 
of the one-body density matrix vanishes in the thermodynamic limit, but sufficiently 
slowly (algebraically) that the integral over |r - r'| diverges in the thermodynamic 
limit, signifying the divergence of the order-parameter susceptibility. 

This QODLRO actually gives some life to the condensate fraction as long as one 
takes the thermodynamic limit carefully. In particular one finds that in this ordered 
phase, No oc Nc where 0 < c < 1 in a QODLRO phase. In that case one may still 
define the condensate wavefunction $o(r) as above. 

In liquid helium, the coherence length is rather short-ranged^ the off-diagonal 
limit in the case of the bulk is achieved well before|r-r'| reaches 10Ä. At equilibrium 
density for zero temperature, the condensate fraction is approximately N/N0 = 0.085 
as determined by quantum Monte Carlo simulations [6], a number that is consistent 
with deep inelastic neutron scattering at low temperatures [7]. 

The spatially quick onset of the ODLRO limit leads to the possibility of 
superfluid-like behavior in systems as small as a few hundred particles Ref. [3] and 
references cited therein). 

3. OFF-DIAGONAL LONG RANGE ORDER IN FERMION FLUIDS 

By examining the possibility of ODLRO in ideal Bose and Fermi gases, it is 
clear immediately that there is a fundamental difference imposed by the statistics: 
the ideal Bose gas has a Bose-Einstein condensate at and below a well-defined tran- 
sition temperature, while the ideal Fermi gas does not. While the introduction of 
interactions produces fundamental differences for both statistics, nature shows us 
that this qualitative difference is robust: a gas or liquid of interacting bosons will 
have a BEC and ODLRO if the temperature is low enough or the density is high 
enough, but fermion fluids apparently do not possess ODLRO unless there is an 
attractive interaction present, and even then it is not guaranteed. 

The absence of ODLRO in the one-body density matrix for a fermion system is 
a trivial consequence of the Pauli exclusion principle: the condensate number No is 
in every case the occupation number of a one-body state (specifically, 3>o) [3], which 
cannot be greater than one when spin is included. 

The solution to this old puzzle has long been known [8,9]. Stated in terms of 
the reduced density matrices, the lowest order reduced density matrix in which one 
may find ODLRO in fermion fluids is the two-body density matrix, which is defined 
by [10] 

P2(ri,r2,n',r2') = (^ M^M^i)^')) ■ 
and has a similar interpretation as the one-body density matrix except in this case 
for pairs of particles. The ODLRO that corresponds to superconductivity in fermion 
systems (and fermion superfluidity in liquid 3He) is obtained by taking the off- 
diagonal limit wherein both unprimed coordinates approach an infinite distance from 
the primed coordinates: 

gmp2(ri,ra,ri/,r2
/) = Af0$o(ri,r2)$o(ri' >rz') 



where now we have a macroscopic, normalized pair wavefunction $0(1*1, r2) which is 
short-ranged in ri — r2, a dependence that can otherwise be ignored in the analysis 
of ODLRO. Indeed, in a uniform system, one may decompose $0 into a "center 
of mass" factor depending on (n + r2)/2 multiplied by a "relative" factor. If the 
relative factor falls off fast enough to be normalized in a volume of order unity, then 
one has ODLRO in the two-body density matrix if M0 is macroscopic. It is relatively 
simple to calculate this two-body wavefunction in a translationally invariant BCS 
superconductors, where it is seen that ^/M^^o(r) is just the fourier transform of 
Ukvl, and 

M0 = ^£kl2kl2 

where Uk and Vk are the BCS-Bogoliubov parameters determined by diagonalizing 
the BCS hamiltonian. 

Another possible form of superfluidity appearing in the two-body density ma- 
trix is a bound-state pairing, wherein this two-body function is exponentially short- 
ranged [11-13]. That would be a composite boson picture, where the two-body bound 
state essentially satisfies Bose statistics. This type of pairing could occur at a higher 
temperature than the onset of ODLRO, unlike the BCS transition where the Cooper 
pairs are formed at the superconducting transition temperature. Of course the onset 
of ODLRO in the two-body density matrix in the bound-state pairing case could be 
described just as well by ODLRO in the one-body density matrix of the composite 
bosons. In that case the maximum value of Mo would be N/2. It should be noted, 
however, that such bound-state pairing would require an attractive interaction over 
the distance scale of the exponential, which suggests that there must be involved 
additional bodies in the pairing if when the two bound particles are identical "ele- 
mentary" particles, such as two electrons. (Composite fermions such as deuterium 
and 3He can have a "bare" attractive interaction leading to unassisted pairing.) 

4. ADDITIONAL PROPERTIES OF FEW-BODY DENSITY MATRICES 

There are a few properties of p2 that are worth noting, and when combined with 
the corresponding properties of p\ point to general properties for higher order reduced 
density matrices (though the latter are not important for present purposes), and 
again give some insight in to the relationship between boson and fermion ODLRO. 
It is obvious that the two-body density matrix is symmetric or antisymmetric in 
the unprimed coordinates (as well as the primed coordinates) for boson and fermion 
statistics respectively, and it follows that for both statistics it is symmetric under 
simultaneous exchange of indices 1 and 2. All reduced density matrices are linked by 
sequential relationships whereby the lower order density matrices may be obtained 
from the higher order ones by tracing out an appropriate number of coordinates. In 
particular, 

Pi(ri,ri)dri = N 

and 

/■ 

/ 
p2(ri,r

/
2,ri,r2)rfri = (N - l)pi(r2,r2) 



Finally the fully on-diagonal n-body reduced density matrix is precisely the n-body 
reduced density. Thus, in the common notation: 

Pl(r,r' = r) = p(r) 

which is the one-body density, while 

P2(ri,ra,ri,ra) = P2(ri,ra) 

= p(ri)p(r2)02(ri,r2) 

where g2 is the well-known pair distribution from the theory of fluids. (Having 
the correct behavior of p2(ri, r2) as |ri - r2| -» 0 is crucial to a good theory of 
strongly correlated fluids.) One also has occasion to use the partially off-diagonal two- 
body density matrix, which appears under the integral sign in the 2 =*> 1 sequential 
relationship above, and which also plays an important role in the theory of final state 
interactions in deep inelastic neutron scattering. 

When there is ODLRO in an n — body density matrix, it implies the presence of 
ODLRO in a higher-order density matrix as long as both reduced density matrices 
have have indices n of 0(N°) [10]. In particular, ODLRO in the one-body density 
matrix in a boson system leads immediately to ODLRO in the two-body density 
matrix: 

Ump2(r1)r2,r1
/,r2/) = ^0

2$o(r1,r2)*o(ri/>r2/) 

Thus the two-body condensate number M0 = N$, but at the same time the pair 
wavefunction $o(ri,r2) is no longer short-range in |ri — r2|, instead satisfying: 

lim      $o (r i, r2) = $0 (r i) $o (r2) 
|ri-ra|-»oo 

Thus there is an extra factor of the volume in the denominator of the right-hand side, 
making the entire right-hand side of the off-diagonal limit of the two-body density 
matrix again of order unity in this case. Nevertheless one can see that the ODLRO in 
the two-body density matrix of a system which has ODLRO in the one-body density 
matrix is fundamentally different than the possible ODLRO in the two-body density 
matrix of a fermion system. The full off-diagonal limit in the former case is then 

ton p2(ri,r2,ri',r2') = JV2$0(ri)$o(r2)$o(ri')$o(r2') 

where the "DOD" limit means that all coordinates are distant from one another, not 
just primed from unprimed. 

Note that there is no reason in principle that a boson fluid should not first show 
ODLRO in the two-body density matrix, in which case this last equation is no longer 
valid and M — 0 is O(N) instead of 0(N2). However that would produce a factor of 
two in the quantum of circulation, which is definitely not seen in liquid 4He. I.e., the 
quantum of circulation is confirmation that the ODLRO first appears in the one-body 
density matrix in liquid 4He, while the presence of the factor of two in the quantum 
of magnetic flux is confirmation that ODLRO first appears in the two-body density 
matrix in superconductors. 



5. FROM MANY TO FEW: REDUCING THE INFORMATION 

More general possibilities for ODLRO were detailed by C.N. Yang in his 1962 
global analysis of ODLRO [10] in terms of reduced density matrices pn(Rn,Rn/) for 
indices n > 1 (where for conciseness we use the shorthand notation Rn = {ri,..., rn} 
and similarly for the primed coordinates): 

pn(Rn, Rn') = (^(rn) • ■ • ^(nMn') • • • tf (rn')> . 

This leads naturally back to the full (or N-body) density matrix and its relation 
to the reduced density matrices. . 

Since we wish to work in coordinate space, it is most convenient to employ the 
canonical ensemble for the description of the system at finite temperatures; then the 
zero-temperature limit produces the N—body ground state wavefunction. 

For the iV-body system, the iV-body density matrix is proportional to the coor- 
dinate space representation of the statistical density operator: 

W(RN,RN') = <RN|p|RN'> = ^PAKR
N
,R

N
') 

where RN = {ri,..., r^r}, RN' = {r[,..., r'N} and the statistical density operator is 

p = exp[-ß(H - F)} 

where H is the hamiltonian, and F is the Helmholtz free energy which serves to 
normalize the density matrix. This statistical density operator contains all of possible 
information about the iV-body system in thermodynamic equilibrium in the sense 
that the most probable measured value of an observable B is given by 

(B) = TrBp. 

W(RN,RN ) may be expressed as an JV—body operator in terms of its own eigen- 
values and eigenfunctions, which are of course the eigenfunctions of the hamiltonian. 
Thus the AT—body density matrix may be written in diagonal form: 

PAr(R
N,RN') = J^N\e-KE«-F^a(RN')$*a(RN) 

a 

where ß is the inverse temperature and Ea and $a are respectively the eigenvalues 
and eigenfunctions of the hamiltonian. Thus we see that the eigenvalues of the 
N—body density matrix are are N\ exp[—ß(Ea — F)]. 

At zero temperature the N—body density matrix becomes 

pN(R",B?') = iV!$0(R
N')*o(RN) 

where $o is the ground state wavefunction of the hamiltonian. 
The iV! is obviously a nuisance here, and in any case is just a convention. How- 

ever it does serve as an illustration of several points. Obviously the T = 0 density 
matrix has maximum possible quantum coherence since it is a single quantum state. 



But the maximum condensate number is N\, not NN as one might guess by extending 
the the pattern that we observed above in the reduced density matrix cases. More- 
over it was this pattern that produced an off-diagonal limit for the reduced density 
matrices that was of order unit when the system has ODLRO. This is just an indi- 
cation that it is the dominance of a single term in the diagonal representation of the 
density matrices which is the important property for producing ODLRO. At T = 0 
there is only one term in this diagonal representation. 

We wish to elaborate further on the replacement of the full density matrix by 
the reduced density matrix for most purposes in a macroscopic system. In particular, 
while the average value of an observable B is given by (B) = TrBpu/Nl, nearly all 
observables are few-body operators. (The most important exception is the entropy.) 
Thus if B is an n-body operator, its average value is given by: 

(B) = Tr{BnPn)/n\ 

= — f Bn(n,... rn; ri,... OPn(r'i, • • • r'n; n,... rn)dri • • • dr'^ • • • dxn 
n\ J 

where this reduced density matrix is given by the first equation in this section. (Note 
that if Bn is a coordinate space operator, i.e. if it is diagonal in coordinate space, 
then it includes a factor of a permanent or determinant of Dirac delta functions 
<5(rj — Vj) for bosons or fermions, respectively, which draws the entire expression on 
diagonal via the integral over the primed coordinates, replacing the n—body density 
matrix by the n-body density. On the other hand, the most common examples 
of non-coordinate space operators are the momentum and kinetic energy operators, 
both of which are one-body operators.) 

The reduced density matrices obviously carry less information about the system 
than the N—body density matrix, since the former cannot be used to calculate ex- 
pectation values of the higher order operators. Moreover, at finite temperature the 
measure of the reduction of information compared to a single state of the system (or 
the T — 0 state) is the information entropy, given by 

Sr = -Tr[WlnW] 

which of course is related to the thermodynamic entropy S by the Boltzmann con- 
stant: S = kßSi. A measure of the further reduction of information as the N—body 
density matrix is traced down to reduced density matrices is the information entropy 
of the reduced density matrix. To define this we first define a normalized reduced 
density matrix: 

w„(ri,... r'n; n,... r„) = —j-^Pnir'i,... r^; n,... r„) 

which satisfies Trwn=l. The average value of an n—body operator then becomes 

ATI 
(B> = jN=n)MTr{BnWn) 

The information entropy for this reduced density matrix is then 

Si,n = -Tr(wn In wn) 



Except for the ideal Bose gas at T = 0, this information entropy is non-zero for 
n < N even at T = 0. This is made clear by expressing pn in its own diagonal 
representation, or equivalently wn, which is diagonal in the same representation: 

™n(Rn,Rn') = ^Pn,A$n)A(Rn)$;iA(Rn') 
A 

where Pn,\ = ^"^M^A where Mn,\ are the eigenvalues of the n-body reduced 
density matrix pn. Thus the information entropy at this level is: 

Si,n = -^2 Pn'x ln Pn>x 

x 

We conjecture that this is a monotonically increasing function of N-n in conformance 
with the fact that the information is decreasing with each successive step downward 
through the reduced density matrices. 

We know of no use of this particular formulation, though we are currently ex- 
ploring this further. 

In conclusion we have summarized a number of facts related to Bose-Einstein 
condensation, pairing, ODLRO, and the properties of reduced density matrices. The 
literature is rich with many other properties of these density matrices. We also note 
that there has been recent attention to bound-state pairing as a possible explanation 
for some of the unusual properties of high temperature superconductors. 
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1. INTRODUCTION 

Over the last few decades, there has been a search for bose-condensed systems. 
Until a little over one year ago, liquid helium below 2 K was the only elemental system 
which was observed to be Bose-Einstein condensed. Elsewhere we have heard about 
the successes in seeing BEC in atomic vapors and the attempts to cool spin-polarized 
atomic hydrogen to sufficiently low temperatures to BEC. [1] 

Molecular hydrogen H2 is a natural candidate for superfluidity since it is com- 
posed of two pairs of fermions (electrons and protons) in singlet bound states (in 
para-hydrogen). (This is different than the system Silvera discussed: spin polar- 
ized atomic hydrogen.) A hydrogen molecule has half the mass of helium, hence the 
ideal bose condensation temperature would be double that of helium. Hydrogen is 
a spherical molecule, stable and commonly found, possessing an internal structure 
(para/ortho hydrogen)that is easily accessible to experiment. At low temperatures 
and pressures the density of the triplet state, (ortho-hydrogen) is very low in equilib- 
rium. Because of the light mass, one might expect that exchange effects in hydrogen 
would be more important than in helium. However nature is not so accommodating. 
Because a hydrogen molecule is more polarizable than helium, the attractive Van 
der Walls interactions between two molecules are stronger. Its attractive well depth 
is 37K instead of 10K between helium atoms. As a consequence, the zero pressure 
density is somewhat higher in hydrogen (0.026 Ä-3) than in helium (0.022 Ä-3). In 
helium, when one compresses by this much, one forms a solid at 25 bars. Unfortu- 
nately, from the point of view of superfluidity, this has already happened in hydrogen 
at zero pressure. To make molecular hydrogen into a superfluid all one needs to do 
is to lower the density by a small amount (10% to 20%.) 

Maris[2] tried to form supercooled droplets of liquid hydrogen since the interior 
of a droplet would be at a negative pressure. One might hope that there would be a 
barrier to the nucleation of the solid phase as a droplet cools by evaporation. However, 
both liquid and solid hydrogen are highly mobile, so that if there is a tendency for 



solidification, it is likely that solid hydrogen would form quickly. Several groups[3] 
initially reported superfluid-like signals of hydrogen in vycor, a substance with a 
porous fractal geometry. While it is plausible that disorder might favor the liquid 
over the solid, the temperature where the anomalous signals were seen was well above 
the expected temperature for BEC. The experiments have now been explained as due 
to movement of hydrogen in and out of the vycor as the temperature is changed. 

We have simulated molecular hydrogen in clusters [4] and found that in clusters 
of fewer than 20 molecules the superfluid density is high. We have also simulated 
bare hydrogen surfaces and found surface melting of two layers down to 5.5K and 
delocalization of the topmost layer at even lower temperatures. Simulations of sys- 
tems with an incomplete topmost layer are superfluid but incomplete layers are not 
thermodynamically stable. We see thermally activated vacancies in the top layer 
below the melting temperature, but too few to Bose condense. Vacancy motion is 
however responsible for relaxation of hydrogen surfaces. 

We speculate that in certain "dirty" hydrogen films, the tendency for solidi- 
fication might be suppressed enough for the film to undergo a Kosterlitz-Thouless 
transition at low temperatures. Recent simulations[5] of 2D hydrogen with repulsive 
potassium impurities support this idea, exhibiting superfluid properties at IK. 

2. PATH INTEGRAL MONTE CARLO METHOD 

The method of choice for investigating superfluidity of bosonic systems is Path 
Integral Monte Carlo (PIMC). For bosonic systems, PIMC is an exact numerical 
method and computers and methods are fast enough that one can begin to "design" 
the superfluid. (By that, all that is meant is that one can quickly investigate the 
effect of changing some of the parameters in the model with enough reliability that 
an experimentalist might try to see the effect.) Only PIMC is capable of accurately 
predicting the two transitions in condensed 4He: the transition to the superfluid state 
below 2.2K and the transition to a localized solid above 25 bars pressure. Thus we 
can use it with confidence to predict what would happen to molecular hydrogen in 
various situations. 

Feynman[6] introduced imaginary time path integrals. Each molecule is mapped 
into a "polymer", the molecules trace a path in imaginary time which returns to its 
starting position. Bose statistics corresponds to exchange of polymers where different 
molecules end up in exchanged positions. Superfluidity corresponds to a macroscopic 
exchange. 

There are several classic manifestations of superfluidity which can be calculated 
with PIMC. The first effect to be observed and explained by Feynman was the peak in 
the specific heat resulting from the enlarged phase space of the permuting paths. The 
second effect, the non-zero superfluidity density is defined in terms of the response 
of the system to moving the boundaries. This is calculated in PIMC as the mean 
squared winding number in periodic boundary conditions, or the mean squared area 
in a cluster. The third effect is a momentum condensation, where a non-zero fraction 
of the atoms has precisely zero momentum. This is observed by inelastic neutron 
scattering as discussed by Silver. The momentum distribution is a delta function 
in 3D and has an algebraic singularity in 2D, resulting from the Kosterlitz-Thouless 
transition.   The momentum distribution is calculated in PIMC by cutting open a 



polymer and seeing if the two ends separate or remain bound.   The theory and 
numerical methods of PIMC are discussed in detail in ref [7]. 

The calculations reviewed here treat the hydrogen molecule as a spherical parti- 
cle, which is a good approximation for para-hydrogen at low pressures and tempera- 
tures. This is because two interacting molecules, both in the J=0 state, are rotating 
quickly enough that they appear spherical. We have used the semi-empirical Silvera- 
Goldman[8] potential. Comparisons to experimental data have errors on the order of 
a few degrees (K) per molecule. 

The only unusual feature of our calculation is the special care that needs to be 
taken at the boundaries for a surface or cluster. Clusters were enclosed in a spherical 
cavity (radius about 20 A) to keep molecules from evaporating. Surfaces were mod- 
eled with an external potential in the z direction and periodic boundary conditions 
in the x and y directions. Typical simulation boxes are roughly cubical, 20Äon a 
side, containing on the order of one hundred molecules. The external potential is 
constructed so that the particles are attracted to one wall with precisely the force 
exerted by a semi-infinite slab of hydrogen at the equilibrium density. In some calcu- 
lations a "frozen" layer of hydrogen was inserted next to the attracting wall to better 
model the underlying layers. More details are given in refs. [9-11]. 

Once the Hamiltonian is specified, the exact pair action of two molecules is 
calculated, so that long imaginary-time steps can be used. Tests have established 
that we need an imaginary-time step r < 0.025K-1 so that the time-step error is 
much smaller that the statistical error and the error from the assumed potential 
energy. This means that we need 20 "time-slices" to achieve a physical temperature 
of 2 K. Use of the primitive action would require hundreds of time steps for equivalent 
accuracy. A generalized Metropolis procedure is used to sample the combined path 
and permutation space. Statistics are gathered on properties such as energy, density, 
structure factor, exchange probability and superfiuid density. We have used the MPI 
(message passing interface) language to speed up the calculations by doing several 
runs in parallel[ll]. One can go directly from the Hamiltonian to physical properties 
with a run of less than 1 day on workstations; less for thermodynamic properties, 
more for the superfiuid density. PIMC is unique as a numerical technique in its 
accuracy, ability to deal with complex situations, and efficient use of the powerful 
computers that are available. 

3. THE SURFACE OF SOLID HYDROGEN 

Molecular hydrogen is unique among the elements in having an interface between 
a highly quantum solid and a vacuum at low temperature. Scaling from simulations 
of classical liquids would give a triple point temperature of about 26K; in fact the 
freezing temperature is 13.8K. Because of the effects of quantum motion, the subli- 
mation energy (i. e. the chemical potential) depends very strongly on the isotopic 
mass. It changes from 95 K for H2 to 140 K for D2. We calculate an energy of 87 K 
for H2 with PIMC, thus verifying that our potential is reasonably accurate. Errors 
come from the assumed potential not the path integral method. 

The breakdown between kinetic and potential energy is interesting. The kinetic 
energy is 69 K at low temperatures, showing that quantum effects are very large 
and explaining the large isotope effect in the sublimation energy.   We estimate[9] 



the Lindeman's ratio (rms deviation from lattice site divided by nearest neighbor 
separation) in the bulk as 0.21, in agreement with the experimental estimate of 0.18. 
Also, the equilibrium solid density is calculated correctly. We calculate a surface 
tension of 3.4 KÄas compared to extrapolation of measurements in the liquid phase 
of 5.3 KÄ. 

From our PIMC studies[9], it is clear that bare H2 surfaces are very different from 
bulk solid because of delocalization and, below m IK, bose statistics. We find the top 
layer of solid hydrogen to be very fluffy: the rms displacement of the atoms on the 
surface in the normal direction is almost twice what it is deep inside the sample. This 
fluffiness is greatly reduced[10] if helium atoms are on top; even though the helium 
atoms sit well above the hydrogen surface they serve to pack it down and increase 
the localization of the hydrogen: thus helium poisons any hydrogen superfluidity. 

Surface melting is the formation of a stable liquid layer at the solid/vapor inter- 
face below the bulk melting temperature. Most bulk materials are believed to be wet 
by a film of their own melt, a few atomic or molecular layers thick at temperatures 
very near the melting temperature. For a single molecular H2 layer, a solidification 
temperature of 5.74K has been seen in experiment[12]. This is more than a factor of 
two below the bulk melting temperature, but is still too high to expect that liquid 
H2 will become superfluid. The question arises whether quantum surface melting is 
qualitatively or only quantitatively different than that of classical surface melting. 

Figure 1 shows a rough "phase diagram" of the surface layers of solid hydrogen 
as determined with PIMC[11]. Depending on the surface density and temperature, a 
layer of hydrogen can be either in a 2D gas, 2D liquid or solid or coexistence between 
those three phases. We defined the phase of a layer with simple structural criteria. 
They are not necessarily rigorous (but could be made so.) 

1. The spatial extent of a layer is identified by the minima in the vertical density. 
A molecule belongs to that layer if its centroid is between those minima. 

2. A solid has large peaks in the transverse structure factor. Normally these are 
commensurate with the underlying solid hydrogen lattice but near melting we 
see evidence of other incommensurate solid structures. 

3. We identify a liquid as a layer with a smooth transverse structure function. 
4. A superfluid has many non-trivial exchanges and windings around the periodic 

boundaries. The number of superfluid atoms is proportional to the mean squared 
winding number. 

5. A liquid /gas coexistence has a very large compressibility, as computed by the 
structure factor extrapolated to zero wave vector. 
Using these definitions of liquid and solid, we find[ll] that the top layer remains 

liquid down to about 6K, in agreement with experiments[12]. We examined the 
liquid-gas coexistence by doing simulations with a half-filled top layer. That top 
half layer never froze but below the liquid/gas critical point the resulting superfluid 
formed a 2D drop. This phase is however not stable in the thermodynamic limit. For 
a large enough system, the density of the droplet would become large enough for it to 
solidify. The molecules near a surface step are delocalized even at low temperatures, 
but it is unlikely that they can connect up with other steps in such a way as to 
propagate the phase of the wavefunction (the order parameter) across a macroscopic 
distance. 
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Figure 1. The dependence of layer density on temperature. Each point represents 
the layer density and temperature. The solid circles are identified as a liquid; open 
circles as the coexistence between a 2D liquid and a 2D gas; solid squares are a 
2D solid; the open triangles are a very disordered 2D solid, possibly the coexistence 
between 2D liquid and 2D solid. The solid line at 0.0804 A-2 is the coverage deep 
inside the solid. The line at 13.8K is the bulk melting temperature. If the system 
remains a liquid to sufficiently low temperature it will become superfluid as marked. 

There is one way in which a solid can become a superfluid: if vacancies in the 
solid were numerous enough they could bose condense. This is called a "super- 
solid": a system with a spontaneously broken translational order and momentum 
condensation. In our simulation we see that top layer expand before it melts. Hence, 
it must contain vacancies but the question is whether there will there be enough of 
them to become superfluid. We find[ll] that the vacancies are thermally activated. 
Their concentration is given by: 

c(T) = D0exp(-AE/(kBT))   . (1) 



Bose condensation occurs when a bosonic exchange percolates through the sample. 
To find the transition temperature one needs a relationship between exchange and the 
density. The two dimensional superfluid transition (Kosterlitz-Thouless) transition 
occurs at a temperature when : 

Tc = 1.8c{T)a0h
2/m*   , (2) 

where m* is the effective mass of the vacancy and the coefficient in front has been 
determined for 2D 4He by Ceperley and Pollock [13]. The precise value of these two 
parameters will not matter. The question is whether these two equations have a 
solution for Tc. They do iff: 

Ei < [1.8Dia*h2]/[m*e]   . (3) 

Putting in rough estimates for m* w 2m and Di for the first layer the LHS of the 
inequality is 25K and the RHS is 2.3K so one never has Bose condensation. The 
concentration of vacancies drops too fast as the temperature is lowered so that the 
thermal wavelength (growing as T-1/2) never reaches a neighboring vacancy. 

Even though vacancies do not Bose condense on the surface of hydrogen, ap- 
parently, they are responsible for mass transport at the surface. Classen et al.[14] 
recently described measurements of surface acoustic waves on hydrogen surfaces at 
low temperature. They prepared a thick homogeneous layer of hydrogen on silver. 
Upon raising the temperature the film forms bulk crystallites because the bulk has 
a lower chemical potential; this is called dewetting. However, the process of dewet- 
ting is diffusion-limited and can be sensitively observed by monitoring the changing 
signature of the surface waves. By varying the temperature, one can determine that 
the mass diffusion is thermally activated with an energy of 23 ± 2 K. It is plausible 
that the mechanism for surface diffusion of hydrogen films is thermally activated va- 
cancies since the creation energy of the vacancy that we estimated matches what is 
measured. We are currently calculating of vacancy energies for the other hydrogen 
isotopes to further compare with experiment. 

4. DIRTY HYDROGEN SURFACES 

We have seen that hydrogen at a surface has a tendency to become a super- 
fluid[10]. However, if hydrogen is placed on top of another solid layer of hydrogen, 
the situation favors too much the solid and the top layer freezes at 6K. One must 
modify, in some way, the substrate on which a layer of hydrogen sits. 

The basic idea of our most recent simulations is to favor the liquid state by 
putting down an array of impurities, incommensurate with the solid hydrogen struc- 
ture. This lowers the density and the melting point by lowering the free energy of 
the liquid phase, relative to the solid phase. To simplify the problem, to date, we 
have only considered a two dimensional model where the hydrogen molecules were 
restricted to lie in a plane. In that plane, we placed a number of static impurities. We 
have varied the density and type of impurities to try to favor the liquid state as much 
as possible. Figure 2 shows a representation of our best superfluid 2D hydrogen. It 
is composed of a square lattice of impurities, spaced about lOAapart. We have yet 
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Figure 2. A typical path of hydrogen molecules in the superfluid state. The nine 
large circles represent the K impurities: the small circles are the positions of the 
hydrogen molecules at a single time slice. The imaginary time trajectory of the 
particles has been Fourier smoothed for clarity. A single unit cell of the simulation 
box is shown as the dashed rectangle. One can see that the path winds around the 
periodic boundary conditions in the x direction, thus it is superfluid. 

to examine other ways of putting down the impurities, we have only varied their 
spacing. We have found that large impurities which repel the hydrogen molecules 
work best. Attractive impurities form a skin of solid hydrogen around them and 
"seed" a localized, non-superfluid, glassy hydrogen phase. 

Figure 4 shows the energy versus coverage of the clean system (no impurities) 
and the dirty (impurity) system. The effect of the impurities is to lower the binding 
energy, but it also lowers the density at the minimum. The system at the minimum 
is a liquid (solid in the clean system) as evidenced by the structure factor. The su- 
perfluid density, calculated from the mean-squared winding number, versus coverage 
is shown in figure 3. The minimum in the energy corresponds to a maximum of 
the superfluid response. One half of the atoms are superfluid at temperatures below 
IK, the other atoms make a normal liquid skin around the impurities. We predict a 
superfluid transition at about 1.2K. 
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Figure 3. The superfluid fraction versus hydrogen coverage (in molecules per Ä-2) 
at IK for the 2D system with potassium impurities present. At the optimal coverage, 
roughly half of the molecules participate in superfluid flow. At higher coverages the 
system becomes localized. 

We have examined the spacing between the impurities and determined that if 
they are closer together the superfluid cannot propagate between the cracks. If 
they are further apart, small hydrogen crystallites can form in the area between the 
impurities. A spacing of roughly 10 Ä  is optimal for stabilizing the liquid. 

We are now studying the 3D models as we did with pure hydrogen surfaces. 
Once the Hamiltonian is constructed the calculations are relatively routine, though 
potentially time consuming because of the large number of substrate/impurity com- 
binations. An important physical consideration to take into account in looking for 
an appropriate substrate is that hydrogen must wet the surface at low temperature: 
hydrogen must prefer to absorb on the surface, rather than form a pure crystal. The 
chemical potential of bulk hydrogen at low temperature is around 90K and we see 
that the binding within the 2D layer with impurities present is about 10K. Thus the 
binding energy of a single molecule to the substrate should be more than 80K. If it is 
much greater than 80K the hydrogen molecules will be trapped into pockets on the 
surface and unable to move around and exchange. Amongst the rare gas substrates, 
Neon has close to this value of binding. However, it is not clear how one would be 
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Figure 4. The energy/molecule versus the coverage for the "clean" (translationally 
invariant) systems (lower points and curve) and system with potassium impurities 
(upper points and curve) at a temperature of IK. Because of the repulsive interaction 
of the impurities, the zero pressure coverage is lowered and fluid at all temperatures, 
while the "clean system" is solid for the lowest energy coverage. 

able to place impurities on a neon surface. 

5. CONCLUSION 

PIMC for systems of bosons is an exact numerical method and is now to the 
point that we can use it to explore novel systems for superfluidity or other quantum 
properties. PIMC is past the point where one is simply reproducing the results of 
experiment but instead we are trying to make predictions that will guide experimen- 
talists. This progress has come about because of the development of accurate robust 
numerical many-body techniques, and of ever faster computers. The methodology 
has grown synergestically with other many-body methods. Of course, experiments 
are crucial to verify the predictions. 

We are using the same code to study hydrogen in a completely different regime: 
at much high temperatures and pressures, to study what happens as the atoms and 



molecules become ionized and dissociated. Full details of these and other calculations 
are on our WWW page: www.ncsa.uiuc.edu/Apps.CMP/index.html 
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1. INTRODUCTION 

In this contribution, I shall mention some features of pairing forces that are unique 
to nuclei and cover some areas of major interest in nuclear structure research, that 
involve pairing. At the level of most nuclear structure studies, nuclei are treated 
as consisting of two kinds of fermions (protons and neutrons) in a valence space 
with rather few levels. These features give rise to unique aspects of pairing forces in 
nuclei: 1) n-p pairing in T=0 as well as the usual T=l pairing that is characteristic 
of like fermions, 2) a need to correct pairing calculations for the (1/N) effects that 
can typically be neglected in superconducting solids. An issue of current concern 
is the nature of the pairing interaction; several recent studies suggest a need for a 
density dependent form of the pairing interaction. There is a good deal of feedback 
between the questions of accurate calculations of pairing interactions and the form 
and magnitude of the pairing interaction. Finally, I discuss some many-body wave 
functions that are a generalization of the BCS wave function form, and apply them 
to a calculation of energy level spacings in superdeformed rotational bands. 

One expects n-p pairing to be important mainly in light nuclei, where the valence 
orbitals for neutrons and protons are the same. Nuclear forces are short range and 
one can get reasonable estimates of matrix element sizes by using a 6 interaction. In 
light nuclei, L-S coupling provides a good description of nuclear level structure, and 
the standard pairs consist of partners in time reversed orbitals (N,L,M,Ms) and (N,L,- 
M,-Ms), giving rise to L=0, S=0, J=0 pairs. Exactly the same spatial overlap exists 
for orbital pairs consisting of (N,L,M,Ms) and (N,L,-M,MS) giving rise to L=0, S=l, 
J=l pairs. Such an antisymmetrized 6 matrix element vanishes for like particle pairs 
of this type. However, this matrix element does not vanish [1,2] for n-p pairs. It is 
large and gives rise to collective J=l, T=0 pairs. Strong evidence for the importance 
of such pairing comes from the spectroscopy of p-shell nuclei. The ground states of 
the odd-odd nuclei 6Li and 14Ni are 3* = 1+. Recent studies [3] of f-p shell nuclides 
suggest that T=l n-p pairing also plays an important role in describing the properties 
of the neutron-deficient nuclides of this region. 
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2. BEYOND MEAN FIELD 

As we attempt to describe nuclear properties more accurately, details of the cal- 
culational method become more and more important. The inadequacies of nuclear 
structure calculations, arising from the non-conservation of particle number in BCS 
wave functions, has become an important issue recently. The problem is particularly 
serious in deformed nuclei, where the number of active valence orbitals is ~5, i.e. 
(1/N) effects are almost as important as the leading terms. One of the approaches 
for dealing with this problem in a quasi-particle formalism is the Lipkin-Nogami [4,5] 
method. A clear discussion of this method has been given [6] and has been recently im- 
plemented in several calculations [7,8]. One could do exact particle number projection 
and solve the problem, with the penalty of giving up the simplicity of quasi-particle 

solutions. 
In the Lipkin-Nogami method, one augments the pairing Hamiltonian with the 

usual XiN term and adds an additional term A2iV2 term. The quantities Ai and A2 

are determined by using reasonable, but arbitrary conditions [6] on the BCS wave 
function. What is going on is obscure. Here, I would like to show a much simpler 
way [9] to understand these issues, based on exact sum rules. For any wave function, 
with good particle number, the following sum-rules are exact. 

£W> = W> (1) 
e 

where N0 is the number of nucleon pairs in the state of interest and (O) is the 
expectation value of an operator in state |^). 

(NkY,Ne) = (N0-l)(Nk) (2) 
tyk 

(Nk)(YiNt) = (N0-(Nkj)(Nk) (3) 
e^k 

Combining Eqs. (2) and (3), we get the exact correlation sum rule 

(tffcl» - (Nk)(T,Nt) = -(Afc)(l - Nk) (4) 
l^k i^k 

This correlation is exactly the same in magnitude as the correlation between the 
two nucleons induced by the pairing interaction. {NkN-k) = {Nk) in a pairing wave 
function so 

(NkN.k) - (Nk)(N.k) = (Nk)(l - Nk) (5) 

The correlations of Eq. (5) are exactly included in a BCS wave function, but those 
of Eq. (4) are absent. We can include the effects of these correlations, by setting 

{ataUa-^) = [<A-(1 - Nj)) ■ (ityl - N,))}^ (6) 



and introduce an approximation based on the sum-rule correlation. We set 

(NiNj) = (Ni)(Nj)-ßißj/J2ßk (7) 
k 

where 

ßk = (Nk)(l-Nk) (7a) 

and one solves in the usual way. This approximation gives fairly good agreement 
with exact results, but underestimates the anti-correlation between pairs on opposite 
sides of the fermi level. We improve the approximation by taking this special anti- 
correlation into account, setting 

(NiNj) = -Vßi-ßj-S(iJ) (8) 

where 

Sid = (Ni)(l - Ni) + (Nj)(l - Nt) (8a) 

V =  [#X><1 " Nr) + (1 " N^ßriNr)}'1 (86) 
r r 

Solving, with this approximation, we get extremely good agreement with exact solu- 
tions obtained[10] for equally spaced levels. Not only are the energies almost exact, 
the occupation probabilities are also almost exact. In Fig. 1, we compare the exact 
and BCS energies and occupation probabilities [10] for a system having 32 equally 
spaced, doubly degenerate levels, and 16 pairs, with the results obtained in our ap- 
proximation. This clearly shows the effects of ignoring the correlation effects in small 
systems. In condensed matter systems, this should not be much of a problem because 
the anti-correlations are distributed over many levels. In typical nuclear systems, the 
number of active orbitals is ~5; (l/N) effects are crucial. 

It is important to note that no wave function based on the BCS structure (a 
product form) is appropriate in the RPA regime. One useful way of dealing with 
such problems is a configuration interaction diagonalization procedure that uses the 
pairing interaction strength as a generator coordinate. This can be considered a 
discretization of the Hill-Wheeler equation [11,12]. In this approach, one varies the 
interaction strength, and obtains a many-body solution for each value of the strength. 
Such solutions are not orthogonal, and the overlaps must be included in a generalized 
diagonalization procedure. We set 

\iv) = Y,AMG) (9) 
i 

and the amplitudes are determined diagonalizing the Hamiltonian using the physi- 
cal value of G. Approximate solutions can be obtained, using the Gaussian overlap 
approximation. 
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Figure 1. A comparison of exact, BCS and correlation corrected wave functions. In the upper panel, 

we show the occupation probability of level 17 obtained in the three calculations, as a function of 
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We emphasize the need to go beyond simple treatments of pairing in deformed 
and superdeformed nuclear systems. In the deformed heavy elements, average single 
particle spacings are ~200 keV, i.e. it takes ~400 keV to promote a pair of neutrons 
and the interaction constant is just ~100 keV. This is the reason that there are so 
few active orbitals in nuclear pairing calculations, and one must go beyond BCS wave 
functions. Superdeformed shapes are associated with particularly low level densities 
and one must get far beyond BCS to get results that are meaningful. 



3. EFFECTIVE PAIRING INTERACTIONS 

Only with accurate calculational methods in hand, can we turn to the question 
of what is the effective pairing interaction. The simplest and most often used form 
of the interaction is to assume a constant G interaction. The magnitude of the 
interaction depends on the number of levels used in the calculation, as there is a 
divergence problem. Typically, one uses ~30 doubly degenerate Nilsson levels in such 
calculations. The strength of the interaction is ~(21±1)/A for neutrons, where A is 
the nuclear mass. Considerable controversy has developed in the literature about the 
magnitude of the proton pairing interaction; with values of Gp=l.l Gn, 1.3 Gn, 1.4 
Gn and 1.6 Gn appearing [7,13-17] in the literature. 

In all of these cases, pairing interaction strengths were obtained from fits to ex- 
perimental data. It should be noted that different calculational techniques are used 
by different authors, and this gives rise to some of the differences. However, there 
are differences for calculations in different regions using a given method. It would 
be interesting to make a systematic study of pairing interaction strengths in different 
mass regions, using the density dependent pairing force discussed below. At this point 
in time, one must be wary of simple extrapolations of pairing strengths. Rather, it 
appears more reasonable to fit the strength to some relevant experimental data in the 
mass region of interest. 

If one uses a 5-interaction for calculating pairing matrix elements, the quality of 
agreement with experiment is about the same as with a constant G interaction. It was 
noted [18] that a density dependent 8 interaction provides a much improved descrip- 
tion of nuclear features. The main argument [19] for a density mediated interaction is 
that the free interaction is too strong to be consistent with observed nuclear features. 
It should be noted that one in fact must adjust the overall strength of constant G, 
8 or density dependent 8 interactions to reproduce spectroscopic observables such as 
gaps or two quasi-particle excitation energies. The form of the interaction introduced 
[18] is 

V(ftj) = -V08(rt - fj) [l - (p (r)/p0)
2/3] (10) 

where p0 is roughly equal to the nuclear density. In some cases, it is taken as slightly 
smaller than the interior density and the interaction is repulsive in the nuclear interior. 
The power of 2/3 is also not crucial. We have found that any power between 2/3 and 
1 gives essentially the same results, so long as one adjusts the overall strength, Vo, to 
give the same gap. The effect of this interaction is that orbitals that are concentrated 
in the nuclear surface and exterior regions have large pairing matrix elements. One 
might think that the overall pairing strength might be substantially larger when 
nuclei are superdeformed as compared to when they are normally deformed because 
the surface to volume ratio is substantially larger for superdeformed shapes. 

If one adjusts the strength, what are the observable differences between the dif- 
ferent forms of the pairing interaction? One way of differentiating between different 
interactions is to look at level spacings between orbitals as the fermi level moves from 
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far below them to far above them. This can be done conveniently [20] in the actinides, 
where the changes in deformation are relatively small. In Fig. 2. we indicate how this 
spacing changes with the position of the fermi level when one of the two levels (a) has 
large pairing matrix elements and the other (ß) has small ones. When a is blocked, 
the energy costs are high and when ß is blocked the costs are low. When both levels 
are far above the fermi level or far below, pairing changes their relative spacings 
slightly. The level ß will be somewhat closer to the ground state. However, when 
the levels are near the fermi level, there may be apparent spacing changes of several 
hundred keV when the number of of the relevant nucleons is increased by two. In Fig. 
3. we display the single particle level spacings for actinide neutrons, as extracted [20] 
from experiment using: a) a constant pairing interaction, and b) a density dependent 
interaction. Clearly, the latter interaction appears to give a better description of the 
data. Most of the large shifts in extracted level spacings disappear, when one uses 
the density dependent interaction. 
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A density dependent pairing interaction has been used for a study of the halo 
nucleus 9Li [19]. Recently, density dependent pairing has been used to calculate 
[21] the properties of the Pb isotopes, ranging from A=190 to A=214, using several 
versions of a density dependent pairing interaction. They can account quite well for 
neutron separation energies using several variations on density dependent pairing. 
When they examine the changes in nuclear radii, however, they get somewhat better 
agreement with experiment using a term depending on the gradient of the density 
(more surface peaking) in their interaction. Using the standard version of density 
dependent pairing, one does not reproduce [22] the changes of charge radii quite so 

well. 



4. ROTATIONAL BANDS IN SUPERDEFORMED NUCLEI 

Superdeformation was first discovered [23] in the heavy elements, when a short 
fission lifetime was measured in 242Am, that had a known fission lifetime. The life- 
times of these fission isomers were explained in terms of a second, sup er deformed [24] 
minimum in the nuclear energy surface. Typically deformed nuclei are characterized 
by axis ratios of ~1.3:1. The fission isomers are characterized by axis ratios of ~2:1. 
See the article of Bjornholm and Lynn [25], for an excellent review of fission isomers. 

One of the exciting developments in nuclear structure studies in the past decade 
has been the discovery [26] of superdeformation at high spins. The superdeformed 
bands in the A 150 region are characterized by axis ratios of 1.85:1. Superdeformation 
at high spin in this region was predicted [27,28] in calculations. An island of superde- 
formation near N~88 was found in calculations at 1=0 [29] and used to explain many 
of the features found in fission mass yields. 

A few years after the discovery of superdeformation in the A~150 mass region, 
our calculations [30] indicated that there were accessible superdeformed states in the 
A~190 region. Such states were shortly thereafter found [31-33] in 191Hg and 192Hg. 
In this region, the axis ratios characteristic of superdeformed shapes are ~1.65:1. Su- 
perdeformed minima are characterized by extremely low single-particle level densities 
near the fermi level. From the point of view of pairing calculations, this means that 
it not sufficient to develop product wave functions, even those with particle number 
projection before doing a variational calculation. One way [34] to deal with such 
problems is configuration interaction, using the generator coordinate method. It was 
found in the Hg region that the dynamic moment of inertia is a moderately increasing 
function of angular momentum, for angular momenta I0h < I < 40ft. The dynamic 
moment of inertia is defined as the moment of inertia that one would infer for a perfect 
rotor by looking at the the difference between successive transitions in a rotational 
band; i.e. for a rotor the energy is 

E(I) = ^[l(I + l)} (Ha) 

so 
J = 47i2(MeV)-7 [{E(I + 2) - E(I)} - {Eel) - E(I - 2)}] (116) 

Note that one does not need to know the angular momenta of the states involved in 
the transitions to define a moment of inertia in this way. This is appealing for ex- 
perimentalists, as the spins may be hard to determine. In the Hg region, calculations 
that ignore pairing, give estimates of the moment of inertia that are constant with 
angular momentum. By including pairing, one gets variations [35] in the moment of 
inertia. 

A second motivation for accurate calculations of the properties of superdeformed 
rotational bands was the discovery [36] of "identical bands"; i.e. sequences of transi- 
tions with the same energies, in different nuclei (151Tb and 152Dy). This is particularly 
strange as Dy has an even number of protons and Tb has an odd number of protons. 



The phenomenon of identical bands was also found in the superdeformed bands [37] 
of the Hg region, and even in normally deformed nuclei [38]. Before worrying about 
identical bands, it seems necessary to understand what is involved in the accurate 
calculation of transition energies in a single band. 

5. MANY BODY WAVE FUNCTIONS 

Here, we consider the calculation of rotational energies in the cranking approxi- 
mation [34] using a many-body wave function. Specifically, we consider the following 
questions: 1) how important are configuration interaction effects, and 2) what are 
the differences between constant G pairing and density dependent pairing in superde- 
formed nuclei. 

The cranking [39,40,41] Hamiltonian is 

H = 53 ekNk - u J^Wijafaj - ]T G^a^-i0-:^ (12) 
fc i,j ij>0 

where a; is a Lagrange multiplier and Jx is angular momentum about an axis perpen- 
dicular to the symmetry axis. The pairing matrix elements that we consider are: a) 
constant G, and b) density dependent delta interactions. 

The many-body wave functions that we use are products of sums of terms. We 
set 

i 

where a is an unspecified quantum number such as the projection of angular mo- 
mentum on the nuclear symmetry axis. Each of the terms in the sum is in turn a 
product of creation and annihilation operators and |0) is the particle vacuum. For 
purposes of illustration, we consider a group, i, consisting of three doubly degenerate 
Nilsson orbitals and having an even number of neutrons in the group. There are four 
ways that the number parity can be portioned among the levels, keeping an overall 
even number parity. In general, there are 2N~l terms when there are N levels in the 
group. There are the same number of terms when the number parity is odd. Making 
a tabulation of the possibilities, we have 

Orbital Number 

1 2 3 
1 e e e 

m        __      . 2 e o o 
Term Number <   _ 

6 o e o 
4 o o e 



When we have an V associated with a level in a given term, we put in a factor 
(1+Bafat) and when we see an 'o' associated with a level, we put in the factor 
(af+Ca!) where B and C are variational parameters. In total there are (N+l)(2jV_1) 
variational parameters in a group with N orbitals. To illustrate, we have for the third 
term in the table 

03 = A3(a\ + T31aU) (l + T32a\a)_2) (4 + T33al3) (14) 

The parameter A3 is usually 1.0. The first term corresponds to a BCS-like wave 
function. Before solving for the variational parameters, we project from Eq. (13) a 
state of exact proton number, exact neutron number, good parity and good signature. 
For a group with 5 levels, there are 80 variational parameters to be determined and 
448 in a group of 7 levels (where we neglect those like A3). The solutions are obtained 
by iterating the set of coupled non-linear algebraic equations obtained by minimizing 
H with respect to the variational parameters. In our typical calculation, there are 
~1500-2000 variational parameters, taking both neutrons and protons into account. 

6. ROTATIONAL SPACINGS IN THE SUPERDEFORMED 
BAND OF 192Hg 

We apply these wave functions to the lowest superdeformed band in 192Hg. As we 
are considering superdeformed shapes, where the single particle level densities are very 
low, we anticipate that configuration interaction effects are important. Calculations 
of rotational spacings that include pairing without configuration interaction effects 
have been carried out in this mass region by several authors [7,16,42-44]. A very 
nice feature of our wave functions is that off-diagonal matrix elements and overlaps 
are easy to calculate. We have used both the neutron and proton pairing strengths 
as generator coordinates. Further, we have carried out diagonalizations where the 
cranking frequency is treated as an additional generator coordinate. In the latter 
case, the solutions consist of ~70 different configurations. In Fig. 4, we show the 
neutron and proton pairing correlation energies as a function of angular momentum, 
calculated with constant G pairing 

GN = .118 MeV    Gp = 1.4GN (15) 

when we consider just the single wave function that minimizes the energy. When 
we include configuration interaction, there is a considerable improvement in the total 
energy. In Fig. 5, we show the gain in energy, when Gn and Gp are used as generator 
coordinates (solid line) and the energy gains obtained by using the cranking frequency 
(dashed line) as a generator coordinate in addition. The improvements in the energy 
are substantial, on the order of 0.5 MeV at the higher spins. 

To what extent are transition energies are affected by the inclusion of configuration 
interaction. In Fig. 6. we display the difference between calculated and experimentally 
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observed transition energies in 192Hg. Perfect agreement would be the straight line 
at 0 keV. The dashed curve shows the difference when configuration interaction ef- 
fects are not included and the line shows the difference when configuration interaction 
effects are included. There is a substantial improvement in the agreement with exper- 



iment in the latter case. Apart from the question of the adequacy of our calculation, 
this result illustrates most emphatically the need to go beyond mean-field (BCS) 
when the interaction is weak. We believe that this result has universal relevance for 
superdeformed rotational bands, because one gets superdeformation only when the 
level density is low near the fermi level. The issue of weak pairing interactions is 
always exacerbated with increasing angular momentum, as can be seen from Fig. 4. 
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We next consider the following question: to what extent does the density de- 
pendent delta pairing interaction improve our results? In Fig. 7, we compare the 
rotational spacings obtained with a constant G pairing force and a density dependent 
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6 pairing force. We have adjusted the strengths of the density dependent proton 
and neutron pairing interactions to have the same overall strength as the constant 
G interaction at l=10h. Configuration interaction is included in both calculations. 
In this calculation, the value of Gp was taken as 1.3Gn to look at the sensitivity to 
small changes in pairing strength. We have subtracted the energy differences of an 
ideal rotor with a moment of inertia of 100 h2 MeV-1 from the calculated energies, 
in order to see the energy differences clearly. We also show the experimental energy 
differences in this figure. The obvious result here is that both choices of pairing 
interaction give substantially the same result. On this scale, it appears that they 
disagree with experiment. We have also looked at the relative shifts of single-particle 
orbitals, in odd-mass superdeformed bands in analogy to our study of the actinides. 



Here, the relative shifts of levels with large and small average pairing matrix elements 
is on the order of 100 keV as we vary the fermi level. This is to be contrasted with the 
~500 keV shifts in the actinides. The reason that density dependent pairing effects 
are attenuated in superdeformed minima is that the overall pairing is reduced because 
of the low single particle level densities associated with superdeformed minima. 
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To retain some sense of perspective, it is useful to compare the calculated and 
observed level spacings in 192Hg, without subtracting any reference energies. This 
amounts to an integration over the energy differences of Fig. 6, obtained with con- 
figuration interaction. In Fig. 8, we make such a comparison, The calculated and 
experimental energies are adjusted to be the same for the I=10+ level. The absolute 
value of this energy depends on the excitation of the superdeformed minimum relative 
to the ground state at 1=0. Looking at the energies in this way, we see an impressive 
agreement over an interval of 9 MeV. The differences between experimental and ob- 
served energies are less than 200 keV from 1=10 % to 1=42 h. This indicates that we 
have a reasonable understanding of superdeformed bands in the Hg region. The ~500 
keV improvements, that we get by including configuration interaction, are noticeable 

even on this scale. 
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7. SUMMARY 

We have discussed the important role that the small number of valence particles 
play in nuclear spectroscopic pairing calculations. We have shown, using exact sum 
rules, how correlations arise from going beyond the BCS wave function. We have 
tried to show the importance of taking many-body correlation effects into account 
with a detailed consideration of level spacings in superdeformed rotational bands. 
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1. INTRODUCTION 

The recent observations of Bose-Einstein condensation in 87Rb [1], 7Li [2] and 
23Na [3] have renewed much theoretical interest in the study of low density bose 
systems. The importance of these experiments is not, as some press coverage would 
seem to suggest [4], that low density systems allow a cleaner theoretical determination 
of the Bose condensate. While this may well be true, there are no serious theoretical 
disagreements over the condensate fraction in liquid Helium (all within 8%-ll%), 
which is about a billion times as dense as these atomic systems. The continuous 
debate has always been whether neutron scattering experiments, as a probe of liquid 
Helium, despite strong final-state-interactions, can directly signal the presence of the 
condensate. Thus the importance of these recent observations lies not only in their 
novel techniques of condensate production, but also of its detection. 

The fundamental energetics of a dilute, uniform, bose gas with positive scattering 
length has long been elucidated in a series of seminal papers by Huang and Yang [5], 
Lee, Huang and Yang [6], and others [7]. More recently, P. A. Ruprecht et al. [8], have 
solved numerically, and Baym and Pethick [9] have shown analytically, how the mean- 
field theory of Gross and Pitaevskii can be applied to the case of a non-uniform bose 
gas confined in a harmonic trap. In contrast, since a bose gas with negative scattering 
length, such as 7Li, will collapse in the bulk limit, little is known about its ground 
state properties. When trapped in a harmonic well, this instability is postponed by 
the confinement kinetic energy. However, both the onset and the dynamics of this 
instability is not well understood. The initial Li experiment [2], which suggested 
that there may be more particle in the ground state than can be accounted for by 
the Gross-Pitaevskii mean-field theory, has triggered new theoretical efforts in the 
study of overall attractive bose systems [10] . The revised experimental estimate of 



the condensate particle number [11] has removed a basic discrepancy, however, it has 
not lessened the urgency to understand this fundamental bose system better. 

In this work, we outline some fundamental steps necessary for a microscopic 
study of bose systems with negative scattering length. In the case of positive scat- 
tering length, it is well known that perturbation theory is not directly applicable. 
One key observation of this work is that for negative scattering length, the use of the 
Moszkowski-Scott [12] separated potential once again renders perturbation theory 
useful. We will discuss in detail the properties of the full Li-Li potential and the re- 
sulting finite size corrections when this potential in a harmonic well is approximated 
by the scattering length. 

2. THE NON-INTERACTING BOSE GAS 

The onset of the Bose-Einstein condensation in an ideal Bose gas is characterized 
by a critical temperature 

For liquid Helium, where N/V = 0.0218 A"3 and h2/mkB = 12.12 KÄ2, this gives 
Tc — 3.13 K, which is quit close to the superfluid lambda transition temperature 
T\ = 2.17 K. For a non-interacting Bose gas confined to a harmonic potential 

V[r) = -müj2r2, 

the situation is more complicated. Let 6 be the characteristic radius of the potential 
defined by the frequency u via 

*">=-&■ (2) 

The ground state wavefunction is then simply 

^o(r) = ^37Iexp(-^). (3) 

The corresponding condensation temperature [13] is 

6rc = (i.202)-v3(jyg)1/3. (4) 

Note that in thermodynamic limit of N -»■ oo, b ->• oo, such that N/b3 -V const., 
Tc -¥ 0! Thus strictly speaking, there is no finite critical temperature. Nevertheless, 
for finite values of b and N, the above defined Tc does characterized a narrow range 
of temperature over which rapid changes associated with condensation are observed. 
To illustrate this, we consider the density profile (or the momentum profile) of a 



harmonically trapped ideal Bose gas as the temperature is lowered below Tc. For an 
anisotropic trap with ujx=uy =u±, its excitation spectrum is given by 

U,j,k = Hw±(i + j) + hujzk. 

At a given particle number N and temperature T, the fugacity A = eti/kT is deter- 
mined implicitly via 

Aexp[-et,j,fc/fcT] 
"-£*to = ETr u,* u,*-   x'M-uj*im 

Once A is known, the integrated two dimensional density profile is given by 

p(x, z) = fdy^ Ni>jtk tf (*)$ (v)ii (*) 
i.J.fc 

= £#<,* #o*)i«(*). (5) 

where 

M .   l-AexpHi^fc/fcT]' 

We have carried out the sum over states in (5) with i and k ranged over 400 states. 
The resulting density profiles for N = 20,000 as a function of temperature is shown 
in Fig. 1. Tc in this case is 71 nK. The geometry is chosen to mimic that of the Rb 
experiment [1]. As the temperature is lowered below Tc, the density profile develops 
a sharp peak corresponding to the macroscopic occupation of the ground state. Since 
the momentum eigenstates are also Gaussians, a similar peaking would also occur in 
the momentum density distribution. 

3. THE TRIPLET LI POTENTIAL 

The triplet potential between two 7Li atoms has been extensively studied by 
many groups [14-21]. The potential is weak by atomic standards, but it is 10 times 
as deep as that between two 4He atoms. Whereas two 4He atoms can barely form 
a bound state, two triplet 7Li atoms can sustain 11 bound states, 9 of which have 
been observed experimentally [16,21], including the topmost one [21]. By fitting and 
amalgamating the short, medium and long range results of [17,18], we have obtained 
a simple analytic potential which is adequate for our computational needs. This 
is shown in Fig. 2. The potential is characterized by a hard core at r = 3 A, a 
well depth of « -480 K, and an attractive range of « 20 Ä. The horizontal lines 
indicate bound state energies; their values are given in Table 1. These are compared 
with experimental values [16,21] and with that of Cote, Dalgarno and Jamieson's 
potential [20]. Also included are comparisons of the scattering length a and the 
effective range re. While there are excellent agreements in the bound state energies, 
there are substantial variations in the scattering length and the effective range. To 
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Figure 1. The integrated two dimensional density profile of 20,000 non- 
interacting bosons in a harmonic trap with bz =0.9845 /im and b±=1.655 /mi. 
x and z are measured in units of /im. The temperatures are, from left to right 
and from top to bottom, 72, 71, 70, and 69 nK respectively. The condensation 
temperature is 71 nK. 

the extent that some predictions are sensitive to the actual value of the scattering 
length, one must remember that the scattering length remains an theoretical inference 
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Figure 2. The triplet 7Li potential from our own fit to the RKR data of Ref. 
[17]. For clarity, only the lowest 8 of 11 bound states are indicated. 

rather than an experimentally observable. 
The existence of the hard core and bound states make it difficult to do a mi- 

croscopic many-body calculation using the bare two-body potential. The hard core 
precludes the use of perturbation theory and the formation of bound states does 
not correspond to the experimental situation. Experimentally, since the density is 
extremely low, bound states can form only by rare three-body collisions. If bound 
states are formed, they are then likely to be ejected from the shallow trap by releas- 
ing their binding energy. Thus the trapped atoms are in a metastable many-body 
ground state with no two-body bound states. One way out of this difficult is to 
use the delta function pseudopotential, which only takes account of the scattering 
length of the bare potential. However, this approach cannot address the adequacy 
of the scattering length approximation itself, nor can it be used to higher orders to 
assess many-body correlation effects. In this work, we will introduce another kind of 
effective potential long familiar from nuclear physics, which eliminates both the hard 
core and the bound state problem. 



Table 1 

The 11 bound state energies (in K) of triplet 7Li of our potential as compared with 
experiment and another calculation, a is the scattering length and re is the effective 
range. The more refined calculation of Ref. [2] gives a = -14.447 Ä. The top most 
level was determined in Ref. [21]. 

Expt. [16] Cote et al. [20] This Work 

-0.598* -0.550 -0.572 

- -4.886 -5.005 

- -16.204 -16.612 

-36.210 -36.253 -36.842 

-65.633 -65.713 -65.813 

-104.222 -104.327 -104.029 

-151.925 -151.998 -151.672 

-208.678 -208.719 -208.625 

-274.460 -274.547 -274.754 

-349.370 - -349.991 

-433.684 - -434.396 

a -9.102 Ä -11.35 A 

re 537.0 A 387 A 

4. THE MOSZKOWSKI-SCOTT SEPARATION METHOD 

A basic idea for dealing with a potential having a strongly repulsive core is to 
separate it into two parts, 

V(r)=Vs(r) + VL(r), 

with the short range part Vs(r) to be treated exactly and the long range part VL{T) 

perturbatively. The choice of Vs(r) and Vt(r) is arbitrary, and can be chosen ac- 
cording to physical insights. For an overall attractive potential with an infinite hard 
core at r = c, Moszkowski and Scott [12] observed that the exact two-body relative 
radial wavefunction u(r) must behave as shown in Fig. 3. As compared with the 
non-interacting two-body wavefunction 

no(r) = sinfcr, 

u(r) is first pushed out by the hard core and hence must be below the free wavefunc- 
tion. As its higher points further out are being pulled back by the attraction, it gives 



the appearance of rising rapidly and bending over. Thus it must have a "hump" at 
which it is tangential to the free two-body wavefunction at a distance r = d. This 
is the Moszkowski-Scott separation distance. The tangent condition at d is just the 
equality of the logarithmic derivatives 

u'{d) _ u'0(d) ,ß. 
u(d)      uo(d)' 

If we simply take 

Vs(r) = V(r)6(d - r)   and   VL(r) = V(r)0(r - d), 

then the wavefunction at r > d is entirely determined by the logarithmic derivative at 
r = d and VL(T). Thus if we are only interested in the behavior of the wavefunction 
at r > d, which is the case for low density systems, then we may as well use the 
simpler wavefunction 

s(r) = {«oW   ifr<<i; 
i(r),     if r > d 

But this wavefunction is produced by VL(T) only. Hence, we may as well replace 
the original potential by just VL(r). In effect, since Vs(r) as defined above gives 
zero phase-shift, we can take it to be zero, in which case, its exact treatment is 
trivial. Thus in its simplest form, the Moszkowski-Scott separation method replaces 
the original two-body potential by just 

V{r) -+VL(r).. 

The separation distance d depends on k = vEm/h. To study particles confined 
in a macroscopic harmonic trap with E =■ \fiw close to zero, we simply take k = 0. 
For 7Li, this separation distance is d = 36.7008 Ä. The maximum potential at this 
distance is only « —4 x 10~3 K, which is certainly weak enough for doing perturbative 
calculations. 

5. THE PAIR ENERGY SHIFT IN A HARMONIC TRAP 

To test the effectiveness of the Moszkowski-Scott separation method, we will ap- 
ply it to the case of two Li atoms in a harmonic trap. In order to make a quantitative 
comparison, we will first compute the pair energy shift analytically. The resulting 
energy shift contains corrections due to the finite size of the trap, which goes beyond 
the scattering length approximation. These finite size effects are widely assumed to 
be negligible; while this may well be the case, it is of interest to demonstrate this 
directly with an analytic calculation. 

For two interacting Li atoms in a harmonic potential, their energy shift is given 
by the relative Schrödinger equation: 

—V2 -I- -mu)2r2 + V(r) 
m 4 

tf>(r) = Eip(r). 



y~S 

^^,.111—v™l   -^. 

u0(0 ./ / 
/ /u(r) 

••*                     / 

Figure 3. The Moszkowski-Scott separation distance d. UQ(T) and u(r) are 
free and interacting relative radial wavefunctions respectively, c is the hard 
core radius. 

Introducing dimensionless variables, e = E/hu = Eb2/(h2/m), V(r) = V(r)/hu>, 
x = r/b, and tl>{r) = u{x)/x, the above reduces to 

■SP + i^M u(x) = eu(x). (7) 

Since b is the size of the magnetic trap on the order of 30,000 Ä, whereas the range 
of the interaction is only 30 Ä, on the scale of x, the Li-Li potential is non-vanishing 
only near x « 0. If the pair potential is ignored, then the solutions of (7) are just 
the parabolic cylinder functions [22]: 

u(x) = U(—e,x). (8) 

Since the potential is non-vanishing only near x « 0, its effect can be incorporate 
as a boundary condition on the wavefunction. Near x « 0, but r much greater than 
the range of the potential, u(x) is the scattered wavefunction oblivious of the trap 
potential, 

u{x) = Asin(bkx + 6), 

8 



where k = y/l/b. Matching u'(0)/u(0) on both sides of (8) gives the eigen condition 
for determining the energy: 

T(- - £) 
bkcot(S) = -V2-^—^ 

To solve this equation for e, we expand in powers of (1/6): 

(9) 

kcot5 = — + -rek
2-Tk4 + 

a       2 -l+H$-T^h 

e=2+£l fl)*.©"«.©'«-©''«®' + 

Matching power coefficients on both sides of (9) then gives: 

ei = A/-a 

62 = 
2(l-ln2)a2 

7T 

e3 = A/-a 
3 
4r' + Kad-^-O-i a 

e4 = 0.00844343a2 (-48.4124a2 + 72.4033are) 

Thus if we define the energy shift AE via 

E = -hw + AE 

then we have 

h 
AEb3 = — { ei + e2 m 

AEb3 = -62.563 + 173 

'i)+*G)2+'*G)3 

.1\1 (^ J + 202317.0 ( i J + 

The first term on the right hand side corresponds to the scattering length approxi- 
mation: 

AEb' 
h2   [2 = —d-a. 
77i V vr 

The rest of the terms are finite size corrections in powers of 1/6. This analytical 
determination of the energy shift is compared with the exact numerical solution in 
Fig. 4. The quadratic approximation is in excellent agreement with the exact solution 
for trap size as small as a few hundred A. The scattering length approximation is 
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Figure 4.  The energy shift of two Li atoms confined in a harmonic trap of 
size b. The solid circles are exact numerical results. 

within 1% of the exact energy for b > 1000 Ä. Thus its use for experimental trap 
sizes of b « 30,000 Ä is well justified. 

6. PERTURBATIVE CALCULATIONS 

The long range part (r^20 A) of the Li-Li triplet potential is known analytically 
[18], 

Ä^M-ßF*^)' 
with coefficients, C6 = 9.6244 x 106, C8 = 1.6163 x 108 and Cio = 4.0046 x 109. The 
Moszkowski-Scott separation method suggests that we replace the bare potential by 

VL(r) ;e + 78" + 710-) ö(r " d)> (10) 

with d = 36.7008 A. In contrast to the delta function pseudopotential, this potential 
can be used in higher order calculations. From its definition, this potential is phase- 

10 



equivalent to the original at zero energy. Let's see how well this works in computing 
the pair energy shift. 

A. First order 

The first order energy shift due to VL is just 

AE^=    <0|VL|0>    = f d3r iPl{r)VL(r), 

where the unperturbed ground state wavefunction tpo is given in (3). Expanding the 
wavefunction in powers of 1/6 and keeping only terms up to 1/65, gives 

A^1} = W-73&-3 - —L75&-5 = -52.1730&-3 + 105058.16"5, 
V 7T V27T 

/•oo 

n = /   vL(ry-\ 
Jo 

where 
/•DO 

VL(ry-ldr 
'0 

The first term here corresponds to the Born approximation of the scattering length, 
since 

K2 

73 = —a-B, m 

and as = —9.4575 Ä. Higher order contributions will correct this to the exact scat- 
tering length. 

B. Second order 

The second order energy-shift is given by: 

AE<2)=   <0|^1-^_><°l^|0>, 

=     d3rid3r2^o(r1)VL(r1)Go{ri,r2-,E0)VL(r2)i>o(r2). 

The Green's Function G = 1/(E—H) for the harmonic oscillator is known analytically 
[23]. Since our potential is spherically symmetric, we only need its S-wave component: 

Go(ri,r2;£)=<ri|(-^-^)      |r2 >, 

~   47rMnr2)3/2 r(3/2)    "•* V n r>)   "•* \hr<)' 

where mw/% = 1/b2, v = E/(2uh), // = m/2, and W and M are the Whittaker 
functions [22].   The required matrix element involves the ground state projection 
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operator 1 — |0 >< 0|. This is easily accomplished by isolating and removing the pole 
term ex \/(E - E0): 

Go(n,r2;E0) =   Hm G0(n,r2;E)   with pole term removed, 
E-*E0 

= e-m(rl+rl) n   i  , tfiW2^   ,„oN , A^   m.my -^__ + "    "     (1 - ln2) + -^r> + 0(a;3/2) 

The resulting energy shift gives 

AE^ + AEj2) = -60.82656-3 + 120.8076"4 + 145750.06-5. 

C. Third order 

The third order energy-shift is given by: 

_<0|n(l^f^)VI|0>.<0|Vi|0>. 

However, since each wavefunction carries a factor of a;3/4, the second term is of order 
a;3 or b~6 and can therefore be neglected in the present calculation. Skipping over 
some tedious algebra, one obtains 

A^1} + A£$2) + A£$3) = -62.31816-3 + 160.8826-4 + 160686.86-5. 

The convergence of these perturbative calculations is shown in Fig. 5. The inclusion 
of results up to third order already gives very good agreement with the exact energy 
shift over the entire range of 0 < 1/6 < 1/200. 

7. A VARIATIONAL HARTREE CALCULATION 

As a prelude for doing a microscopic many-body calculation, we will first con- 
sider a variational Hartree calculation. As suggested by Baym and Pethick [9], it is 
sufficient to use Gaussian trial states, 

^(rx,r2 ... rN) = n<A(ri) = n^2)"374^!-^)' 
i i 

where a is the variational parameter. The variational energy is then 

Ev = N^Jd3r<t>(r)[-V2 + £]0(r) + ±N(N - 1) |d3r1d
3r20

2(ri)VL(r12)<?!»2(r2). 

12 
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Figure 5. First, second and third order perturbative calculations of the Li pair 
energy shift in a harmonic well using the Moszkowski-Scott separated potential 
(10). 

Introducing x = a/b, the Gaussian integrals can be evaluate to give 

Ev/N = ~±l*-2 + A + \(N - l)(2-)3/2^3 jd\Vdr)*M-\^)    UD 

When a is on the order of the trap radius b, since the range of the potential is much 
smaller than the trap size, 

/l r2 f h2 

d3rVL(r)exp(--—) »  / d3rVL(r) = 4TT—aB- 

This gives ^-mi^^^ffi^.^}. (12) 

This is identical to the equation derived by Fetter [24], except that here we have 
only aß rather than a. When the scattering length is negative, the absolute energy 

13 



minimum is at x = 0, but for 

N < Nc = (5-1/4 - S-5'4)^ 
as I 

a local minimum exists near x^l, corresponding to a metastable state. Nc « 2200 
for as = -9.46 A. According to (12), when JV > Nc, the local minimum disappears 
and the collapse is absolute, all the way down to x = 0. However, according to (11), 
which knows about the finite size of the trap, this is not the case. When a is reduced, 
it cuts off the integrated strength of the potential and halts the collapse near a « d, 
which is more reasonable. (Note that if one uses the bare potential, then the integral 
diverges due to the hard core and the Hartree theory is not applicable.) 

The Nc determined here is larger than those appeared in the literature. This is 
due to the use of CLB and the fact that our potential's scattering length is smaller (in 
absolute value) than that of Ref. [2]. 

8. CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, we have outlined the usefulness of using the Moszkowski-Scott 
separation method in the study of Bose condensed dilute atomic system with negative 
scattering lengths. In contrast to systems with positive scattering lengths, where 
perturbation theory is never directly applicable, the MS separated potential for Li 
is very weak. We have shown that third order perturbation theory yielded excellent 
results for the energy shift of two Li atoms in a harmonic trap. The use of the MS 
potential also allows, one to go beyond the scattering length approximation and to 
compute finite size corrections directly. Work is currently in progress to study the 
stability of the Li ground state using many-body perturbation theories and variational 
theories with 2-body correlation functions. 
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1. INTRODUCTION 

A fundamental microscopic understanding of the lambda transition and of the 
condensed phase in liquid 4He assumes heightened importance in the wake of the ob- 
servations of Bose-Einstein condensation in ultracold atomic vapors [1-3]. Although 
computer simulations of the transition have produced many valuable insights [4], a 
satisfactory ab initio theory remains to be achieved [5]. The work to be described is 
offered as a step in that direction. 

We present a microscopic many-body analysis of the Bose-Einstein condensation 
phenomenon in a strongly interacting boson fluid within the framework of correlated 
density matrix theory [6-14]. The approach is based on a trial density matrix of the 
form W(R,R') oc $(R)P(R,R')<2(R,R')$(R'). Effects of virtual collective excita- 
tions are included through temperature-dependent correlated wave function factors 
$(R) and $(R'); effects of real collective excitations, through the incoherence factor 
P(R,R'); and effects of real quasiparticle excitations, through the statistical inco- 
herence factor Q(R, R'). An appropriate choice of the form of Q(R, R'), involving a 
condensation strength parameter Bcc, properly accounts for the infinite range of the 
statistical correlations in the condensed phase, and, with Bcc = 0, serves to extend 
the applicability of the proposed trial density matrix to the normal phase. In the 
spirit of the method of correlated basis functions (CBF) [15-20], such a trial density 
matrix incorporates the dynamical and statistical correlations essential to a viable 
description of the strongly interacting, strongly quantal system found in liquid 4He. 

Implementation of this description requires the evaluation of the free energy 



corresponding to the trial density matrix so constructed. Practical evaluation is 
made possible by application and adaptation of the techniques of hypernetted chain 
theory. Invoking the Gibbs-Delbrück-Moliere minimum principle [11], an optimal 
description is attained by functional variation of the free energy. 

In the simplified version of the theory developed here, we adopt a restricted 
optimization scheme suitable for the target case of liquid 4He. Numerical results 
have been obtained for several key properties of the system at low temperature. 
Among these properties is the condensation strength Bcc, which is nonzero only in 
the condensed phase and may be interpreted as the modulus of the two-dimensional 
order parameter characterizing the Bose broken symmetry [21] associated with Bose- 
Einstein condensation in liquid 4He. As portions of the free energy functional, the 
internal energy and the entropy of the system have been calculated. The latter con- 
tains portions attributable to collective phonon-roton excitations and to quasiparticle 
excitations. The nature of the quasiparticle excitation has been investigated in some 
detail. Remarkably, the theory predicts the existence of two quasiparticle branches 
which follow different dispersion relations in the condensed phase. One quasiparticle 
branch shows conventional behavior, with a dispersion relation that is sensibly ap- 
proximated by a quadratic dispersion law without an energy gap. The second branch 
is characterized by a spectrum containing a gap and displaying a strong tempera- 
ture dependence. Population of the second branch with increasing temperature is 
apparently linked with the degradation of the condensate. 

In more quantitative terms, we find a theoretical condensation temperature (A 

point) Tc ~ 2.3 K for liquid 4He at particle density p = 0.02185 Ä" equal to the 
equilibrium density of the ground state. The first-branch quasiparticles (technically, 
quasiparticles of cyclic or cc type) have zero chemical potential in the temperature 
range T£ < T < Tf, with TA" ~ 1.2 K and T^ ~ 3.2 K. Correspondingly, the 

correlation length of the cyclic distribution function [10] G(°c\r) diverges in the same 
range. At temperatures T^ < T < Tc, the second-branch (or c-type) quasiparticles 
exert a crucial influence in destroying the 4He condensate. In the normal phase, the 
quasiparticle branches are indistinguishable. At higher temperatures above T^, the 
quasiparticles behave essentially like free 4He atoms moving in a nonzero, negative 
chemical potential, with kinetic energies close to the bare value % k2 /2m. 

The organization of the paper is as follows. Section 2 reviews the basic strategy of 
correlated density matrix theory. In Section 3 we assemble a trial density matrix that 
is equipped to describe the principal features of both normal and superfluid phases 
of strongly interacting Bose systems. In Sec. 4 we address the problem of evaluating 
the associated free energy and introduce the diagonal approximation [9,11] for the 
entropy. The form of the approximate entropy is indicative of the existence of two 
quasiparticle branches along with the expected collective mode. Section 5 outlines 
the process of full optimization of the trial density matrix through solution of Euler- 
Lagrange equations derived from the Gibbs-Delbrück-Moliere minimum principle. In 
Sec. 6 we specify the restricted optimization scheme that is adopted for a preliminary 
numerical study of liquid 4He. The results are presented and discussed in Sec. 7, with 
special attention to the behavior and possible significance of the two quasiparticle 
branches. Section 8 describes planned improvements upon this first effort toward a 
microscopic understanding of the lambda transition within CBF theory. 



2. ELEMENTS OF CORRELATED DENSITY MATRIX THEORY 

Consider a homogeneous system of N bosons at density p and temperature T, 
described by a Hamiltonian 

ff=r+y=-f:^Ai+f:,(ni). a) 
j *<j 

We have in mind the case, typified by liquid 4He, in which the two-body interac- 
tion is strongly repulsive at small interparticle separations r and then turns weakly 
attractive, falling off rapidly in magnitude with increasing r. An interaction of this 
kind induces strong correlations in configuration space, and the system cannot be 
adequately described by a mean-field theory. Correlations must be introduced ex- 
plicitly. At zero temperature, this has been done efficiently and with great success 
through CBF theory at its variational level - or simply correlated-wave-function the- 
ory [15-20]. The natural extension of this variational approach to finite temperature 
is correlated density matrix theory [6-14], in which the Rayleigh-Ritz minimum prin- 
ciple for the expected energy E is replaced by the Gibbs-Delbrück-Moliere minimum 
principle [11] for the Helmholtz free energy, 

F = E-TSe    . (2) 

The essential new quantity to be evaluated is the entropy Se, while the expected 
internal energy E becomes temperature dependent. 

The energy and entropy are defined as functionals of the iV-body density oper- 
ator W, 

E[W] = Tr[WH] (3) 

S,[W] = -kBTr[W]nW]    . (4) 

Since we do not know (and will never know) the exact density matrix W for a nontriv- 
ial many-body system, we consider trial density matrices belonging to a restricted 
class. The choice of this class is dictated by two criteria. It must be broad and 
flexible enough, in critical aspects, to permit quantitative explanation of a given set 
of physical measurements, yet it must somehow be simple enough that accurate eval- 
uation of the internal energy and entropy is practical. The free-energy functional is 
to be minimized under variation of W within the chosen class, thus under variation 
of the structural ingredients specifying a member of that class. 

Generalizing variational-CBF theory for strongly interacting systems at zero 
temperature, W is to be chosen, in coordinate space, so as to incorporate the most 
important features of the prevailing dynamical and statistical correlations as well as 
any underlying symmetries of the system. 

Exact Product Decomposition. To this end, we employ the exact product decompo- 
sition of W in the coordinate-space representation [6,9,10,14]: 

W(R,R') = j*(R)P(R,R')Q(R,R')^(R-')    • (5) 



The vectors R, R' denote the configurations of the N particles, and the denominator 

1= fdR$2(R)Q(R,R) (6) 

imposes the unit-trace condition on W. 
The coherence factors $(R) and $(R') have the form of correlated iV-body 

wave functions and, for identical bosons, are required to be fully symmetric under 
permutation. The incoherence factors Q(R,R') and P(R,R'), which differ from 1 
only at T > 0, depend in a non-separable manner on both R and R'. They account, 
respectively, for the presence of real quasiparticle excitations and real collective ex- 
citations, the latter being phonon-roton excitations in the case of liquid 4He. The 
quantities $(R), P(R,R'), and <2(R,R') all depend on the temperature T. They 
can be taken to be real and nonnegative when there is no flow. 

3. ASSEMBLY OF THE TRIAL DENSITY MATRIX 

To describe the analog of Bose-Einstein condensation in a strongly interacting 
Bose system, we make the following choices of coherence and incoherence factors in 
the general product decomposition (5). 

o For the coherence factor we assume a temperature-dependent wave function of 
Jastrow form 

*(R) = «p U f>(ry) I (7) 

defined by two-body pseudopotentials u(ry).  This choice, which accounts for 
the strong dynamical spatial correlations, may be extended to a Feenberg form 
containing triplet, quadruplet, ... pseudopotentials. 

o To describe the effects of collective excitations generated by density fluctuations, 
we adopt an incoherence factor P(R, R') having the analogous form 

PC^RO^exp^^dr.-r^D-^dri-r.D-^dr'i-r;.!)}      .    (8) 

».j 

o To incorporate the effects of quasiparticle excitations, we employ an incoherence 
factor Q(R, R') constructed as 

«(R-K) = whjd-7eA"p?5m{r"(|ri" r'!)+B"z)  ' (9) 

where the contour is to encircle the origin in the counterclockwise sense. The 
constant Bcc is related to an order parameter defined below, and A is a scale 
constant. This construction ensures the proper behavior of the theory in the 
thermodynamic limit [22]. 



The value of the constant A appearing in Eq. (9) is fixed by the dynamical and 
statistical correlations, through 

A = 11 - p jdv rcc(r) (l + Gdd(r) + Gdc(r)) \      . (10) 

The functions Gdd(r) and Gdc(r) are components of the radial distribution function 

g(r) = 1 + Gdd(r) + 2Gde(r) + Gee(r) + 2BCC [2Gdc(r) + 2Gec(r) + G<£{r)}    (11) 

associated with the assumed iV-body density matrix [10,19]. 
It has been demonstrated that the trial density matrix so constituted is suffi- 

ciently general to describe both normal and superfiuid phases of a strongly interacting 
Bose system [10]. The four defining ingredients, namely the pseudopotential u(r), the 
function 7(7*) describing collective excitations, the statistical function Tcc(r), and the 
parameter Bcc, are to be determined by functional minimization of the free energy, 
subject to any relevant constraints. 

Specialization to Noninteracting Bosons. In the absence of dynamical correlations, 
the pseudopotential u(r) vanishes identically. Moreover, collective excitations are 
absent, implying 

7(r) = 0       and       P(R,R') = 1    • (12) 

The quasiparticle excitations are evidently free bosons with kinetic energy e0(k) = 
h2k2/2m. In this special case, the exact JV-body density matrix at arbitrary tem- 
perature is correctly reproduced with a statistical function Tcc(r) of Gaussian form 
[9,10,22], Tcc(r) ~ exp[-7r(r/Ath)2], where Ath is the thermal wave length. The nor- 
mal phase of the free-boson system is recovered by setting the parameter Bcc equal 
to zero. For Bcc > 0, the independent bosons are condensed into a Bose-Einstein 
phase and Bcc may be identified with the condensate fraction. 

Interacting Bosons. Dynamical spatial correlations are now present and hence the 
two-body pseudopotential no longer vanishes identically. However, no long-range 
spatial order exists, so u(r) -> 0 as r -> 0. The ground state is a pure state and 
hence the correlations occurring in it correspond to virtual excitations. Therefore 
the function 7(7*), which describes the effects of real collective excitations, must be 
identically zero at T = 0. However, at nonzero T, real collective excitations are 
present and consequently 7(r) plays an essential role. This function goes to zero at 
large r and has a Fourier transform satisfying j(k) > 0. 

With the choice (9) for the incoherence factor Q(R,R'), the statistical correla- 
tion function Tcc(r) still vanishes as r -t 00 at any given temperature, i.e., in the 
superfiuid as well as in the normal phase. However, it will in general deviate from 
Gaussian form. 

Off-Diagonal Long-Range Order and Bose Broken Symmetry. The parameter Bcc ap- 
pearing in the incoherence factor Q(R,R') is interpreted as a condensation strength, 
the normal phase being characterized by Bcc = 0. Bose-Einstein condensation can 
be said to occur for 0 < Bcc < 1, since the density matrix then exhibits off-diagonal 
long-range order [23]. 



To establish this behavior, take the limit 

lim      W(R,R') = U(R)P(R)^P(R')$(R')    • (13) 
|R-R'| —oo I 

This limit has the simple product form 

lim     W(R, R') = $'*(R)$'(R') (H) 
|R-R'|-»oo 

in terms of a non-vanishing coherent wave function 

$'(R) = ^P(R)$(R), (15) 

where 
AT 

--X^ij) 
1L 

(16) P(R) = exp < 

and 
Bc=jB7ce

{*    . (17) 

The quantity Bc will serve as a complex order parameter. The property (14) gives 
rise to ODLRO in the reduced density matrices and specifically in the one-body 
density matrix. 

For the homogeneous Bose system, the complex order parameter Bc of (17) 
carries a global phase <$>. More generally, for an inhomogeneous system, the order 
parameter is characterized by a local gauge Geld 

B?(R) = exp    £ 
N    P 

lnPcc(ri) + i<£(ri) (18) 

where 
Bcin) = v^faK*(r<) (19) 

may be viewed as a macroscopic wave function. 
We now observe the following features. At T — 0, the coherent wave function 

$'(R) for the homogeneous condensed system has a constant phase exp{ziV^} which 
may be removed by a global quantum-mechanical gauge transformation that leaves 
the iV-body density matrix invariant (gauge symmetry). However, at finite T where 
the statistical function Tcc(r) is nonzero, there exists no gauge transformation that 
can eliminate the dependence of the density matrix on Bc in the condensed phase 
where Bc ^ 0. Thus, in the Bose-condensed phase at T > 0, the assumed density 
matrix breaks the gauge symmetry of the Hamiltonian [21]. 

Particle Sum Rule. In general, one can calculate the particle density of a uniform 
system as the diagonal limit of the (suitably normalized) one-body density matrix 
p(\r—r'\), i.e., as the limit of this quantity for r-r' -> 0. The result agrees necessarily 



with the particle density specified at the outset. This condition is called the particle 
sum rule [9-11]. For the trial density matrix assumed here, it can be given the form 

B* {l + 7j E r-(fc) Nfc) + *c?(*)]} + j E W*) [i + s£\kj\ = l (20) 

in terms of the components Sdc(k), s£\k), and s£\k) of the static structure func- 
tion S(k) (see Refs. [10,11]). 

At this point we introduce the definitions 

ncc(k) = Tcc(k) [l + Sg>(*)]     , (21) 

nc(fc) = Tcc(k) [l + Sg>(*)] + 2BccVcc(k) [Sdd(k) + 2Sdc(k)}    , (22) 

Ä=^^rcc(fc)[5dd(fc) + 5dc(fc)]    , (23) 
k 

with the intent that ncc(Jb) and nc(k) will later be interpreted as (average) occu- 
pation numbers of elementary excitations. The quantity Sdd(k) is the direct-direct 
component [10,11,19] of S(k). The particle sum rule may then be written in the more 
convenient form 

Bcc(l -R) + ±Y1 n~W + 2^ E n*W = 1 (24) 

In the normal phase, we have Bcc = 0 and ncc{k) = nc(k), so the sum rule reduces 
simply to 

l£ncc(fc) = l    . (25) 
k 

At T = 0, the statistical function Tcc(k) vanishes identically and hence the conden- 
sation strength Bcc is unity. 

4. EVALUATION OF THE ENTROPY AND INTERNAL ENERGY 

Diagonal Approximation for the Entropy. To explore the practical consequences 
of the trial density matrix assembled and examined in Sec. 3, we must be able to 
evaluate the free energy F explicitly for the given Hamiltonian. Of the two extensive 
ingredients of F, namely the internal energy E and the entropy Se, the latter is by 
far the more difficult to treat. 

Following [7,9,11] the construction of the entropy is based on a replica construc- 
tion, 

TSe =-ß-'-^TriW} (26) 
(T-+1 

Traces of integral powers a of the density matrix W are analyzed using hypernetted- 
chain (HNC) techniques and the results analytically continued to non-integral values 



of CT. Analytic continuation is performed in diagonal approximation: an approxima- 
tion that reduces the matrix equations resulting from the HNC analysis to simple 
one-component equations. This approximation, which ignores the coupling between 
quasiparticle and collective modes, yields an entropy expression having a transparent 
physical interpretation (cf. [6,9,11]). 

The resulting total entropy is made up of three parts: 

Se = Siph) + Sicc) + S[c)    . (27) 

The individual parts of the entropy may be expressed in a familiar form in terms of 
quantities n(Jfe), ncc(k), and nc(k) that behave like occupation numbers of elementary 
excitations: 

S(W>) = jfcB^{[l + n(ib)]ln[l +n(k)} -n(fc)lnn(fc)}    , (28) 
k 

S^^lksY^i^ + ^ci^Hl + nccik^-nccik^nnccik))    , (29) 
2        k 

5(c) = ifcs^'{[l+nc(Ä;)]ln[l + nc(fc)]-nc(fc)lnnc(fc)}    . (30) 
k 

The diagonal approximation to the entropy then becomes a sum of contributions from 
three types of noninteracting elementary excitations. The occupation numbers ncc(k) 
and nc(k) have already been defined by Eqs. (21) and (22), while n(k) is determined 
by the relation 

n(k)[l + n(k)} = 7(k)S(k)    , (31) 

where S(k) is the static structure function associated with the assumed trial density 
matrix. The prime in Eq. (30) restricts the summation to those k regions where 
nc{k) > 0. 

The contribution Siph) represents the entropy of the collective density fluctu- 
ations - phonons and rotons - and corresponds to a thermal distribution n(k) of 
noninteracting collective elementary excitations having wave number k. 

The second and the third terms of the entropy decomposition (27), i.e. Se
cc 

and Si°\ represent the entropy contributions from two branches of noninteracting 
quasiparticles. The two quasiparticle branches predicted by the theory are distinct 
only in the case of an interacting system in its condensed phase. In the normal phase, 
the two terms s£cc) and s£c) become identical and their sum correctly reproduces the 
entropy derived earlier [9] for a system of normal bosons. 

In the case of noninteracting bosons, dynamical correlations are absent, im- 
plying Sdd{k) = Sdc(k) = 0 and Si°c\k) = Sll\k), so that nc(k) = ncc(k) = 

rcc(/fc)(l + S£\k)). Thus the entropies S(
e
cc) and S{

e
c) coincide in both normal and 

condensed phases. However, the slightest interaction v(r) lifts the twofold degeneracy 
of the quasiparticle excitations in the condensed phase. 

The form obtained for the entropy therefore leads us to distinguish two different 
kinds of quasiparticles, designated type c and cyclic type cc.    The two types of 



quasiparticles in general follow different dispersion relations. Their partial densities 
are given by 

Qc = Y^nc(k)/2N and       gcc = £ ncc(k)/2N    . (32) 
k k 

The interaction-induced symmetry-breaking phenomenon that lifts the degeneracy 
of the cc and c excitations is measured by the order parameter 

M = Qcc ~ Qc    . (33) 
Qcc + Qc 

For the noninteracting system, M = 0 at all T. When interactions are present, M = 0 
in the normal phase and M > 0 in the condensed phase, with M -+ 1 as T -» 0. 

Once we have interpreted the components SlP \Se, and Se° as partial en- 
tropies of noninteracting elementary excitations of Bose character, it is natural to 
introduce the corresponding excitation energies through the Bose distributions 

n(Jfe) = {expßu(k) - l}"1     , (34) 

ncc(k) = {expßucc(k)-l}-1     , (35) 

nc(k) = {expßu>c(k)-l}-1     . (36) 

The energies u(k) of the collective phonon-roton excitations have the proper long- 
wavelength behavior u>(k) ~ %ck as k -► 0, while the excitations belonging to the 
cyclic branch manifest characteristic quasiparticle behavior. Consider first the ener- 
gies of the cc quasiparticle branch, which may be written as ucc{k) — e(0)(fc) - fx, 
introducing the chemical potential psa reference level. The energies e(0)(fc) go like 
%2k2/2m* at small momenta, where m* is a temperature-dependent effective mass. 

The energies uc(k) of the second quasiparticle branch are not independent of 
those of the cyclic branch. In liquid 4He at low temperature, they are found to 
exhibit a large finite energy gap, with a minimum in the maxon-roton region of 
momenta. 
Internal Energy Decomposition. The internal energy corresponding to the chosen 
trial density matrix may also be decomposed into contributions arising from the 
three elementary excitation branches (plus a term of the same form as in the ground 
state at T = 0). The result for the total energy is [10] 

£ = ^epft(fc)n(fc)+l^ecc(fc)ncc(Ä;)+^6o(fc)nc(fc) + iV^  Idvv*{r)g{r)    . 
k k k J 

(37) 
Here v*(r) = v(r) — (%2/4m)Au(r) is the Jackson-Feenberg effective potential, 
e0 = h,2k2/2m, and we have set eph(k)n(k) = e0(k)y(k). In the normal phase, the 
energy result derived in Ref. [9] is regained. 

The single-particle energies ecc(k) appearing in Eq. (37) are given, in terms of 
HNC quantities, by 



s(Jfe) = 60(fc)   1 - X£\k) + Xg>(k) - Bcc[l - X£*(k)} fl + ncc(k) 
-l 

x [Sdd(k) + 2Sdc(k) + Sg\k) - Sdc(k) - Scd(k) - SH\k)] |    .     (38) 

Explicit definitions of the various functions that enter this structural formula are 
given in Refs. [10,11]. At T = 0, where the occupation numbers n(k), nc(k), and 
ncc(jfc) all vanish, the first three terms in Eq. (37) drop out and we are left with 
the standard Jastrow variational result for the ground-state energy of a Bose fluid 
[16-18]. 

5. OPTIMIZATION OF TRIAL DENSITY MATRIX 

Having constructed working functional expressions for the entropy and internal en- 
ergy and hence the Helmholtz free energy F, the last formal step is optimization of 
the four ingredients u(r), j(r), Tcc(r), and Bcc of the trial density matrix by means 
of a minimum principle. 

Incorporating the particle sum rule (24) as a constraint, we introduce the gen- 
eralized Helmholtz free energy 

Fv = E-TSe + u(N - S) (39) 

at prescribed total number N of bosons, where 

E = iV£cc(l-i?)+^ncc(fc) + ^J>cW    • (4°) 
k k 

It may be noted that, by virtue of the particle sum rule, the quantity Bcc is itself 
a functional of the three variational functions u(r), 7(r), and Tcc(r). However, it 
is operationally more convenient to treat these four quantities as independent and 
impose the sum rule via the Lagrange multiplier v. 

Employing the Gibbs-Delbrück-Moliere minimum principle for the free energy, 
variation of Fv with respect to u(r), j(r), Tcc(r), and Bcc leads to four coupled 
Euler-Lagrange equations for the optimal density matrix, 

1   6F"   =0    , (41) 
N Su{r) 

1   SFV 

N 6*f(r) 

1    8FU 

N8Tcc(r) 

10 

= 0    , (42) 

= 0     , (43) 



^=0    . (44) 
NdBcc 

Solution of these equations yields the optimal functions u(r), 7(r), and Tcc(r), and 
the optimal condensation strength Bcc, all as functions of the Lagrange parameter u, 
which is determined by the particle sum rule. 

We next present and interpret each of these Euler-Lagrange (E-L) equations. 

Paired-Phonon Equation. The E-L equation (41) arising from variation of Fv with 
respect to the pseudopotential u(r) may be written as a finite-temperature paired- 
phonon (PPA) equation [24,18] for the optimal static structure function S(k), 

e^l[S(k)-l]+Sv + 2uBccR = 0   . (45) 

This equation involves the variational derivatives R = 8R/8u(k) and Sv = 8S„/8u(k), 
the quantity 5„ being a generalized structure function [9,16,18] that will be made 
explicit elsewhere. 

Generalized Feynman Equation. The E-L equation (42) arising from variation of 
Fv with respect to the function j(r) (which introduces thermal effects of collective 
excitations) is the generalized Feynman equation (cf. Ref. [25]) 

w(Jb) = eo(fc)5"1 (k) coth |w(fc) (46) 

for the phonon-roton energy. This equation is familiar from the original correlated- 
density-matrix analysis of Campbell et dl. [6]. 

Quasiparticle Equation. The third Euler-Lagrange equation, Eq. (43), determines 
the optimal statistical function Tcc(k). Equivalently, it determines the quasiparticle 
distribution function ncc(k), and therewith (via Eq. (35)) the quasiparticle energy 
ucc(k) of the cyclic elementary excitations. In momentum space, this equation may 
be written 

Sv + 6o {BccSdd + (Scc - Sg> - Scc + Sg>) } ncc + (ecc - cucc -u)(l + S^) 

+ (e0 -u>c-v) 6(nc) {l + 5g> + 2 (5CC - Sj?) } + 2uBccR = 0    , 

(47) 
o o 

where the variational derivatives R = 8R/8Tcc(k) and S„ = 8S„/8rcc(k) will be 
explicated elsewhere. 

Renormalized Hartree Equation. The fourth E-L equation, Eq. (44), may be inter- 
preted as a renormalized Hartree equation that serves to fix the optimal condensation 
strength Bcc, which is a kind of self-consistent field. This equation may be given the 
expression 

\ jdv \v*{r) + v;h(r)] ^ + ^ E <c(k)ncc(k) + J^'^X^) = A (48) 

in terms of the Jackson-Feenberg effective potential and a collective effective-potential 
component 

VJ*(r) = jdy-p Jd^{-^(k)n(k)S-\k)} e"ik-r    . (49) 

11 



The Hartree potential in the condensed phase is 

A=-H-B«S ■ (5o) 

Explicit expressions for the single-particle energies e*cc(k) and e*(fc) have been ob- 
tained in terms of HNC building blocks. 

6. RESTRICTED OPTIMIZATION FOR LIQUID 4He 

In a preliminary effort to gain insights into the A transition in liquid 4He, we adopt 
parametrized forms for the pseudopotential u(r) and for the statistical function 
rcc(r) (or dispersion relation ucc(k)), and make a simple ansatz for the condensation 
strength Bcc. This may be considered as the first step toward a full optimization, in 
that the results of the restricted optimization may be used as input for an iterative 
solution of the E-L equations. 

o Assuming the standard Lennard-Jones potential for v(r), we employ a pseu- 
dopotential of Schiff-Verlet [26] type 

„(r) = -{b/rf (51) 

with b = 2.965 Ä. Although it fails to account for the long-range effects of 
virtual phonons, this choice suffices for a semi-quantitative account of the spatial 
correlations at zero temperature, and it is useful as a first approximation in 
iterative solution of the PPA equation. 

o The optimal solution of the E-L equation (47) for the thermal occupation number 
ncc(k), or equivalently for the cyclic quasiparticle energy, is approximated in 
terms of the two-parameter trial form 

h2k2 

which is specified by an effective mass m* and a chemical potential /J,. 

o The renormalized Hartree equation is only relevant in the condensed phase where 
Bcc ^ 0. Rather than attempt an exact solution of this equation, we assert the 
plausible form 

= 1--^E^) * <53) 
k 

motivated by the expectation that Bcc is closely related to the superfluid density 
of the condensed phase. This assumption is in accord with Landau's picture, in 
which the normal component is defined by the total number of phonon-roton 
excitations. 
Having prescribed or parametrized the key components u(r), wcc(k), and Bcc of 

the density matrix, there remains the question of how to treat the collective dispersion 
law. For strict consistency, the generalized Feynman relation should be used to 
evaluate the energies u(k) of the collective excitations.    However, this treatment 
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would ignore backflow effects, which cannot be neglected because of the very strong 
correlations present in liquid 4He. 

More specifically, the roton minimum in the Feynman approximation is located 
at a wave number kR ~ 1.9 A"1, with an energy of about 20 K (depending on 
temperature). Due to neglect of backflow effects, this theoretical energy estimate is 
much too high compared with the experimental value U(1CR) ~ SK for the energy of 
the roton minimum. 

In the interest of a meaningful comparison with experiment, we therefore apply 
an apparently drastic scaling approximation. To mimic the influence of backflow in a 
simple fashion, we multiply the bare energy values given by the Feynman equation by 
a factor 1/3 and employ the scaled data as input to calculate the thermal distribution 
n(k) that enters the proposed formula for Bcc. With this scaling procedure, the 
collective phonon-roton excitation energies are brought close to the experimental 
phonon-roton spectrum. 

7. NUMERICAL RESULTS 

Within the restricted optimization scheme described in Sec. 6, we have carried 
out a numerical study of liquid 4He in a temperature range 0 < T < 4.5 K embracing 
the lambda transition. Results are available for: 
(i) The condensation strength Bcc and the order parameter M that characterize the 

condensed phase, 
(ii) The internal energy and the entropy generated by the collective phonon-roton 

excitations and the quasiparticle branches, 
(iii) The effective mass and chemical potential characterizing the cyclic branch and 

the unusual dispersion properties of the second quasiparticle branch. 

The partial distribution functions needed for the calculation have been evaluated by 
solving the appropriate hypernetted chain equations in the HNC/0 approximation, 
which neglects elementary or bridge diagrams [10,11,19]. 

«8 

T[K] 2.5 

Figure 1. The condensation strength Bcc as a function of temperature T. The 
numerical results for the restricted optimal treatment yield a critical temperature 
Tc ~ 2.3 K, at and below which the liquid condenses into its Bose-Einstein phase. 
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The results for the temperature dependence of the condensation strength Bcc in 
the condensed phase are presented in Fig. 1. This quantity, the absolute square of 
the two-dimensional order parameter (17), deviates from unity by less than 10% in 
the temperature range 0 < T < 1.2 K. At temperatures T > 1.2 K, it falls off rapidly, 
until the condensed portion of the liquid disappears at a critical temperature Tc ~ 2.3 
K. This prediction for the critical temperature for destruction of the condensate is 
fairly close to the experimental value T\ ~ 2.18 K of the A-transition temperature. 

The nature of the A transition may be further analyzed within our microscopic 
model by examining the behavior of the energies u>cc(k) and uc(k) of the two branches 
of quasiparticle excitations. The excitation energy (52) of the cyclic branch is speci- 
fied by the effective mass m*/m of the corresponding quasiparticles and the chemical 
potential \i they experience. The optimal results for these quantities are plotted as 
functions of temperature in Figs. 2 and 3. The effective-mass parameter m*/m shows 
a sensitive temperature dependence, with a maximum of about 1.36 at the critical 
temperature Tc ~ 2.3 K. Below Tc, the mass decreases rather rapidly with increasing 
condensation strength down to temperatures around 1 K, where m* reaches a value 
of about half the mass of a bare 4He atom. At still lower temperatures, T < 0.5 K, 
the effective mass again declines rapidly, levels off, and approaches a value m* = m/3 
as T -» 0. 

In the normal phase above Tc, the effective mass m* of the cyclic-branch quasi- 
particles falls from its maximum at the critical point to a minimum of about one 
bare mass, m* ~ m, at a temperature T£ ^ 3.2 K. Thereafter m* increases slowly 
with temperature. It is interesting to observe that as the temperature is decreased 
through the range Tc < T < Tf, the system tends to resist condensation by an 
appropriate increase of the quasiparticle mass. This feature will be addressed more 
fully below. 

Figure 3 displays the temperature dependence of the chemical potential // felt 
by a quasiparticle of the cyclic branch. At high temperatures, the chemical potential 
is negative. With decreasing temperature, its absolute value decreases rapidly until 
the temperature T£ ~ 3.2 K is reached. The most striking result is the vanishing 
of the optimal chemical potential in the temperature range T^~ < T < T^, with 
T^ ~ 1.2 K. This behavior is very similar to, but distinct from, what is seen in the 
familiar case of noninteracting bosons having the bare 4He atomic mass [27]. In the 
noninteracting case, the particles both attain zero chemical potential and condense 
at a critical temperature very close to T^ ~ 3.2 K. However, in contrast to the 
uninhibited condensation of a system of free bosons, the interacting system reacts as 
the temperature is reduced below T^ by increasing the quasiparticle mass m*. As a 
result, the actual transition temperature is depressed to Tc ~ 2.3 K. At temperatures 
T below T^~ ~ 1.2 K where the system is strongly condensed, a quasiparticle of 
the cyclic type has, instead, a small effective mass (see Fig. 2) and experiences a 
nonzero, negative chemical potential. The chemical potential reaches a minimal value 
H ~ -0.12 K at T ~ 0.7 K and vanishes once again as the ground state is approached 
(T -> 0). 

This and other properties of the chemical potential are related to the behavior 
of the cyclic structure function SiV(k) at zero momentum %k (Fig. 4). The quantity 

Sec (0) is a measure of the correlation length of the associated cyclic distribution 

function GcC\r) (see Refs. [10,11] for detailed definitions). 
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Figure 2. The effective mass m* of the (cyclic) quasiparticle spectrum (52) as 
a function of temperature T. The effective mass has a maximum at the critical 
temperature Tc ~ 2.3 K and decreases rapidly with decreasing temperature in the 
range 0 < T < Tc where the condensed phase exists. 
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Figure 3. The chemical potential /J, of the (cyclic) quasiparticle spectrum (52) 
versus temperature T. The chemical potential vanishes in the temperature range 
TA~ < T < T+, with TA" ~ 1.2 K and T+ ~ 3.2 K. 
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The results shown in Fig. 4 imply that Gc°c\r) is a short-range function in the 
low-temperature region 0 < T < T^ ~ 1.2 K and at temperatures T > T}. As 

the temperature Tf ~ 3.2 K is approached from above, I/Sec (0) -► 0 and the 

correlation length associated with Gc°c\r) diverges and remains infinite throughout 
the temperature range T£ <T < Tf, including the critical temperature Tc for Bose 
condensation. 

0.3 

Figure 4.  Temperature dependence of the inverse of the cyclic structure function 
Scc(k) at zero wave number k. This quantity vanishes in the region T^ < T < Tx 

where the chemical potential /i of the quasiparticle branch (52) is zero, signaling that 
the corresponding cyclic spatial distribution function has infinite correlation length. 

We next discuss the results obtained for the second branch of quasiparticle ex- 
citations. The energies oJc{k) of these excitations are calculated from the average 
occupancy nc(k) through the defining relation (36). In turn, Eq. (22) is used to 
determine nc(k) from the numerical results for the partial structure functions and 
the exchange function Tcc(k). In the normal phase, the excitation energies uc(k) are 
the same as the energies wcc(A;) parametrized by Eq. (52) and the two branches are 
indistinguishable. However, in the condensed phase the branches follow quite differ- 
ent dispersion relations. Plots of u>c(k) versus k are given at selected temperatures 
in Figs. 5 and 6. At low temperatures T < Tx ~ 1.2 K where the condensation 
strength is approximately unity, there is a gap of some 20 K or more between the 
ground state and the c-branch excitations. Moreover, as seen in Fig. 5, there is a 
forbidden wave-number zone, 0 < fc < fco - 1-3 Ä , where quasiparticles associated 
with the second, type-c branch cannot exist. Consequently, the second quasiparticle 
energy branch is practically unpopulated in the temperature region 0 < T < T^ , 
and therefore one has pc ~ 0. 
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Figure 5. Numerical results for the excitation energy uc(k) of the quasiparticle 
branch c at various temperatures T < T^ ~ 1.2 K. Due to the large excitation 
energies, the c-type quasiparticle levels are essentially unpopulated at these temper- 
atures. 
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Figure 6. Numerical results for the excitation energy u)c(k) of the quasiparticle 
branch c at temperatures T^ < T < Tc. In this temperature range, the branch c 
admits low-lying excitations at small wave numbers. Upon approaching the critical 
temperature Tc ~ 2.3 K from below, the forbidden region of energies disappears and 
the excitation branches c and cc become identical. 
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When the temperature exceeds T^, a channel of low-energy c-type quasiparticle 
excitations with small momenta hk opens up, as seen in Fig. 6. With increasing 
temperature, the width of the forbidden zone shrinks drastically. Approaching the 
A-point from below, the excluded region vanishes completely, and thereafter the 
dispersion law uc = uc(k) is coincident with that obeyed by the quasiparticles of 
the cyclic branch. Thus, for T£ < T < Tc, the number of quasiparticle excitations 
increases rapidly with increasing temperature. This causes a dramatic reduction of 
the condensation strength and leads, finally, to the disappearance of the condensate 
at T = Tc ~ 2.3 K. 

The pivotal role in the decay of the condensate that these considerations at- 
tribute to the c-type quasiparticles may be measured quantitatively by the order 
parameter M defined by Eq. (33). The numerical results for the optimal values of 
M(T) are plotted in Fig. 7. Since pc ~ 0 at temperatures 0 < T < TA ~ 1.2 K, 
the excitations of the cyclic branch dominate in this range; accordingly both M and 
Bcc are close to unity. However, when the temperature rises to TA , population of 
the c branch becomes possible. With further increase of temperature, the number pc 

of c-type quasiparticles increases rapidly, bringing to an end the dominant influence 
of the cyclic quasiparticle branch. The two types of quasiparticles become indistin- 
guishable at the critical point Tc ~ 2.3 K, and hence M is identically zero in the 
non-condensed normal phase. 

7[K] 

Figure 7. The order parameter M of Eq. (33) as a function of temperature, show- 
ing rapid falloff in the region T^ < T < Tc due to the open channel of low-energy 
excitations of the quasiparticle branch c. The parameter M vanishes at the critical 
temperature Tc ~ 2.3 K since the two quasiparticle branches become indistinguish- 
able in the normal phase. 
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Figure 8. Dependence on temperature T of the entropies of the quasiparticle exci- 
tations associated with the cyclic branch cc and with branch c. 

The results obtained for the entropy components (29) and (30) associated with 
the two quasiparticle branches in the Bose-condensed phase are displayed in Fig. 
8. The behavior of the entropy component Sic) arising from c-type quasiparticle 
excitations conforms to what we would expect from the preceding discussion. This 
component is effectively zero at temperatures T < T^, but increases rapidly with 
temperature once the channel for type-c quasiparticles of small momenta opens up 
(i.e., once T > T^). Since the quasiparticle branches merge into a single branch at 

the predicted A point, the inequality Sic) < Sicc) becomes an equality in the normal 
phase where pc = pcc- 

In the above we have dealt in some detail with the quantitative predictions of 
our microscopic model of Bose-Einstein condensation in helium. To conclude the 
discussion, due attention should be given, at a more qualitative, interpretative level, 
to the unusual features of this model. In particular, what is the origin of the second 
quasiparticle branch? Does the appearance of two quasiparticle branches have some 
underlying physical significance, or is it an artifact of our ansatz for the trial density 
matrix or of the approximations made? To begin the discussion, it is our position that 
the c-type quasiparticle branch is not an artifact but is instead a manifestation of 
important physics, operating within the limitations of our approximate description. 

One possibility that has been suggested is that the c quasiparticles represent an 
attempt by the model to simulate the quasiparticle damping of the collective modes 
and attendant decay of the condensate. Another intriguing picture harks back to 
an idea of Felix Bloch, that there might exist both particle and hole excitations in 
a system of identical bosons, much like in a Fermi system. This idea is in harmony 
with David Pines' persuasive arguments that strongly interacting Bose and Fermi 
liquids - in particular liquid 4He and liquid 3He - have much more in common than 
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is normally supposed. 
Developing on Bloch's idea, we would view the c branch as the quasiparticle 

branch.   Its energy uc(k) would then be identified as the energy of an additional 
4He atom produced by the action of a creation operator a\ on the ground state. 
Similarly, the cc branch would be considered as the quasihole branch, its states being 
produced by the action of an annihilation operator a*, and its dispersion law u>Cc(k) 
being that of a hole. This interpretation is in fact consistent with, and supported by, 
the fine structure of the version of correlated density matrix theory outlined herein. 
Inspecting the diagrammatic cluster expansions of ncc and nc one sees that the two- 
body cluster suffices to give s£\k), and therewith ncc, to lowest nonvanishing order. 
On the other hand, it is necessary to go to four-body cluster order to obtain the lowest 
nonvanishing contribution to Sil\k) (and up to three-body cluster order for Sde(k))- 
In other words, to describe the c quasiparticle branch, one needs two more particles 
than for the cc branch - just the difference in particle number between a particle state 
and a hole state. Within this "Bloch interpretation," the symmetry between particle 
and hole excitations is broken in the condensed state of an interacting boson system, 
the particle and hole branches having different dispersion relations. The degree of the 
symmetry violation is measured by the order parameter M = (pcc - Pc)/(Pcc + Pc)- 
At low T, particles are bound with an energy gap of about 25 K, but holes can be 
excited continuously in A;. It remains to be seen whether the phonon-roton branch 
mixes substantially with the hole branch and thereby eradicates the quadratic small-A; 
behavior of the hole spectrum. A consistent solution of the Euler-Lagrange equations 
in the condensed system in the relevant low-temperature region may cast some light 
on this question. 

8. FURTHER DEVELOPMENT OF THE THEORY 

What we have described can only be considered a first tentative step toward full 
realization of a quantitative and comprehensive correlated density matrix theory of 
the low-temperature properties of 4He. While the available results show the promise 
of a fruitful illumination of the microscopic basis of the A transition, it is clear that 
substantial improvements upon the current treatment are needed. A convincing and 
definitive calculation is likely or certain to require: (i) complete functional minimiza- 
tion of the free energy, (ii) the incorporation of backflow correlations, (iii) use of a 
better approximation for the entropy, and (iv) an account of the coupling between 
quasiparticle and collective modes. These improvements are being approached step- 
wise. Some positive results are already available for (i), no consideration yet being 
given to (ii)-(iv). 

Such improvements will enable one to explore, in more realistic detail, the vari- 
ation of the partial distribution functions and associated structure functions with 
temperature and density. Among other interesting problems and elaborations that 
should be pursued we can mention 

o Microscopic investigation of the experimentally observed sharpening of the struc- 
ture function S(k,T) as the temperature of the condensed equilibrium state is 
increased toward the critical point (cf. Refs. [28-30]). 

o Calculation of the optimal condensate fraction to elucidate its relation to the 
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condensation strength Bcc (cf. Refs. [12,31]). 
o Extension of the formalism and applications to inhomogeneous Bose systems. 
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1. INTRODUCTION 

The question of how to construct a practical many-body theory when some 
or perhaps all of the constituents are moving at relativistic velocities is discussed. 
Here, an emphasis is being placed on the practical Techniques are sought which 
allow all the methodologies developed for the nonrelativistic problem to continue to 
be used. The emphasis is not on elegance so much as it is on calculability. The 
remainder of the works presented at this workshop do not fall into the relativistic 
realm. Furthermore, I do not see any pending need to incorporate relativity in the 
problems that the people here are addressing. Nevertheless, this work will provide 
an overview and the necessary references if such a need should arise. 

The motivation for this work has been the problem of the interaction of a pion 
with a finite nucleus. We are interested in pion kinetic energies up to 1 GeV, while 
the pion's mass is only 140 MeV. The need for a relativistic treatment is obvious. 
The methodologies and calculational techniques developed for the pion have also been 
applied to proton induced reactions and, more recently, to kaon induced reactions. 

The question being addressed can simply be worded, "What do you have to do 
to your favorite diagrams to make them covariant?" This question is largely one of 
kinematics. It, however, leads to the second question, "How do you handle the basic 
fact that particle number is no longer conserved?" This second question is the source 
of the 'unitarity relations' in the title of this work. This is an important consideration 
when you move to the covariant problem even if particle production or absorption is 
not a significant physical occurrence. 

Below, we first discuss how to define invariant norms, phase space, and covariant 
kinematics. Then we define one-, two-, and three-body states. Utilizing these, the 
next logical question is how to define the underlying basic interaction. An important 
point will be to define the invariant amplitude which is free of kinematic singularities. 
Putting these together, we will provide explicit formulas for the proper self-energy 
in the lowest order impulse approximation.   The proper self-energy is defined in 



terms of the inverse of the Green's function, G^u;)-1 = u> - h0 - £(u;), and, as the 
proper self-energy occurs often throughout many-body theory, this gives a common 
ground for a multitude of problems. For the specific problem of elastic scattering, the 
proper self-energy is the optical potential, (k' | E(w) \k). The optical potential can 
be inserted into an integral equation and the equation solved numerically to produce 
elastic differential cross sections. Finally, we show some recent results for K+-nucleus 
scattering and discuss their implications. 

2. KINEMATICS 

The treatment of kinematics is completely straightforward. Covariant normal- 
izations should be used, 

(k'\k) = 2u(k)6(k'-k) , (1) 

where w(fc) = y/k* + ma. In addition, invariant phase space factors should be used 
for all integrations, 

tfk I 2w(Jfc)  * 

It is not necessary to utilize this manifestly invariant approach. However, without 
explicitly inserting the 2u(k) factors, there is a great risk of misidentifying form fac- 
tors or interactions with an implicit factor of 2u(k) implicitly hidden in the model 
interaction. This can be very misleading in understanding the range of the interac- 
tion; an example of this can be found in [1]. The inclusion of the invariant phase 
space factors and normalizations does limit one to working in momentum space. In 
momentum space these factors are simple multiplication by a function and are not 
an operator which is a function of the gradient. 

One-body states are simply defined by starting with the particle at rest and then 
boosting to a frame in which the particle has a momentum p 

\p,m) = Y, *mm'(p)|0,m') , (2) 

where £mm'(p) is the Lorentz boost operator. This approach was proposed as the 
basis of a phenomenology of particles of arbitrary spin in [2] and explicit construction 
of the spinors based on [3] through spin two can be found in [4]. From the one-body 
states, two-body states are constructed [5] as the direct product of the one-body 
states and then the total and relative momentum states are defined by, 

|&£a)=:|*i}l&)-*|J?*)    , (3) 

where the total and relative momentum are defined by K — Kx + fca and it is the 
momentum of particle one in the frame where the total momentum is zero, K = 0. 
The phase space factors are found to transform as 

dsjfei      d*k3 <PK     d*K ... 
(4) 

MfcO 2w(!ba)     2E(k) 2/i(/c) 



where E*(K) = K* + {m^ + m3)
3 and 

=   ■*(«)■»(«)    . (5) 

In practice, the angular momentum decomposition of these states is also needed, 

\KK) -► |A" JM,KJm) . 

If the particles have spin, then the spin and orbital angular momentum can be coupled 
to give a total angular momentum. 

The construction of these states allows for a covariant prescription of a phe- 
nomenology — the interaction is constructed in the K = 0 frame and then boosted 
to the frame where needed. Having explicitly utilized invariant normalizations and 
phase-space factors, it is imperative that the invariant scattering amplitude [6] which 
is free of kinematic singularities is also used. This will guarantee that in building 
the phenomenology the model interactions and form factors will not include hidden 
phase-space factors. The appropriate amplitude can be found by noticing that the S- 
matrix, (k'\S\k), when defined as a matrix element between invariantly normalized 
states, is a Lorentz scalar. Relating the S-matrix to the T-matrix then produces the 
appropriate invariant amplitude. This invariant amplitude, when angular momentum 
decomposed, is related to the phase shifts Sj by 

j>. _ L^-e1^ smSj , (6) 
■K K 

where w(/c) = UJ^K) + u>3(/c). This is a useful identity as it makes it easy to discover 
the relationship of the invariant amplitude to whatever normalization convention one 
is accustomed. 

Utilizing these definitions, the Lippman-Schwinger equation, i.e.   the integral 
form of the Schrödinger equation, becomes [6] 

(Ä'|TH|B) = (K'|EM|Ä) 

+/^R)<g,'^'g,'^-^)+^
i;',ITMIK'> ■ (7) 

The equation differs from others in the phase-space factors which occur. It is known 
[7] as the Kadyshevski equation and has been used in the pion-deuteron [8] prob- 
lem. A covariant definition [6] of the target wave functions can also be derived in 
this approach. Although the approach is by construction covariant, in practice this 
elegance cannot always be maintained. For example, bound state wave functions for 
the target are required and one does not have Galilean invariant let alone Lorentz 
covariant models to produce these. If a potential model were chosen for the two- 
body interaction, then causality would be violated by the instantaneous action at a 
distance inherent in the model. However, simple field theoretic models, such as the 
Chew-Low [9] model or the Lee [10] model, for meson-nucleon scattering have been 
generalized [11] to provide field-theoretically motivated input models. 



If the interactions are restricted to two-body interactions (they can certainly still 
contain vertices that absorb and emit particles), then the basic kinematic character 
of a calculation will be that of a three-body problem. At each interaction there will 
be the two bodies that are interacting plus the remaining nucleons. For the case we 
shall calculate, there is the incident meson, a struck nucleon, and (A - 1) residual 
nucleons. Calculations thus require the definition of three-body states. Just as we 
generated the two-body state 

| fci fca ) -► | -^la «ia >   , 

the three-body state can be constructed from the direct product of a one-body state 
for particle three and the two-body state, 

| jfe8 > | Kia Kia ) = | ks Kia «ia ) -► | KM fe8(») *» ) > (8) 

where the total momentum is Ktot = k1 + h + k3, and the momentum fc3(ia) is the 

momentum of particle three relative to the momentum üf13 = h + ka, i.e. it is the 
momentum of particle three in the frame where k3 + Ä"13 or the total momentum of 
the system is zero. 

The optical potential (or proper self-energy) for meson (here labeled ir) nucleus 
scattering in the impulse approximation is given by 

<£&IEHIMA) = E/ 
<PkA-i d*k'N cPkN 

2EA-t  2E'N  2EN 

X (*'  p  I &*A-i> ftA I TH | kJN) (kNkA-i I *aiiJ , (9) 

where a is the set of quantum numbers that delineates the bound state *a. For 
this calculation, the difficulty arises because there is no best choice for particles 
1 and 2 whose momenta are to be combined first. The basic ingredients of the 
impulse approximation are the meson-nucleon scattering amplitude and the target 
wave functions. The meson-nucleon scattering amplitude is naturally a function 
of the pion-nucleon relative momentum, indicating that the pion and the nucleon 
should be chosen as particles 1 and 2. However, the target wave function is a natural 
function of the relative momentum of the nucleon to the remaining (A - l)-nucleons, 
so that the nucleon and the residual nucleons should be chosen as particles 1 and 2. 
The solution is to construct not only those states with 1 and 2 paired first but also 
construct those states with 2 and 3 paired first, | Ktot fcl(a3) /ca3 >. If we expand the 
two sets of states in angular momentum eigenstates and then take the overlap of the 
two different orders of coupling, the result is a unitary transformation [5,12] known 
as "relativistic three-body recoupling coefficients." 

The actual expression calculated results from writing the above in terms of the 
three-body states by inserting twice two complete sets of statesv those with the meson- 
nucleon coupled first and those with the nucleon and the (A - 1) nucleons coupled 
first and then doing the angular momentum decomposition. The result is 



Ej(w;fli2i,15i;ft2i151) = 

El da» d cose'    dcose^    . _L :=~ 
J     3            3            *8WaWaWi 

x^(p'1<j>3)*M(p1^i3«3)^3(^3);p^,3^-3;P3^3s3) 

xCj{9sL853(psJ3^s53)ia;gi^iS1(p1iii^ai)as} • (10) 

where Cj are the relativistic three-body recoupling coefficients. Although this may- 
look complicated, it is very straightforward. Given a subroutine to calculate the re- 
coupling coefficients, this is simply a matter of multiplying a few functions together, 
summing over all the indices that appear on the right but not the left, and perform- 
ing the three dimensional integration. This integration is the "Fermi integral" and 
averages over the momentum of the struck nucleon. If the two-body T-matrix is 
modeled as a function of the momentum transfer only, then the T-matrix comes out 
of the integral. The integration then gives the Fourier transform of the density in 
place of the full density matrix which appears here. 

3. UNITARITY AND TIME-ORDERING 

In addition to kinematics, there are several basic differences in the physics that 
occurs when particles are moving relativistically. One of these is that the underlying 
interaction need not conserve particle number and, if covariant, will not be instanta- 
neous. A consequence is that the two-body scattering amplitude will be a function of 
four time variables rather than the two time variables present in potential scattering. 
To treat this situation, the theory must be developed [13] in terms of diagrams which 
have not yet had the time integration performed. The question of whether to work 
with time-ordered Bethe-Goldstone diagrams or Feynman diagrams (in which the 
time-ordering has been totally removed) has an interesting answer — unitarity con- 
straints say to remove some of the time orderings but others need to be maintained. 
Examples of when and when not to time-order parts of a diagram are given below. 

An example is the set of time-ordered diagrams in Fig. 1. The five diagrams 
differ only in the time ordering of the vertices. The time associated with vertex D 
always occurs after the time for vertex A, B occurs always later than A, and D 
occurs later than C. The sum of the five diagrams removes all other restrictions 
on the time-orderings. Approximating the nucleon mass as infinite to simplify the 
algebra, the propagators which arise from these five time-ordered diagrams are 

1 1 1 1 1 1        1 1 1 

Ö/7 ut - u" ü" + u" -w" - ut u" + u0 -w" - ut "o 
1 1 1        1 1 1   _   1 1 1 (n) 

u>" -ut -u" u0      u0 ut — u;"" OJ0      UJ0 ut - u" u0 

The first point is obvious. It is as simple, if not simpler, to calculate all of these dia- 
grams as a single entity. The second point arises from the realization that unitarity 
relations [14] can be used to extract models for inelastic scattering that are implicitly 
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Figure 1. Five time-ordered diagrams, time running from bottom to top. The 
dashed lines are pons, solid lines nucleons. Note that in all diagrams D is always 
later than A, B is later than A, and D is later than C. Other than these restrictions, 
the diagrams sum over all time orderings. 

contained in the optical potential. Here all but the first diagram has three mesons 
present at a given time. The result of the sum of all of these diagrams does not contain 
any implicit model of pion production, however. The number of particles present at a 
given time in time-ordered diagrams does not in any way relate to unitarity relations 
and the implicit model of inelastic channels. Alternate arrangements of the diagrams 
have also been proposed. One of these [15] is the 'fixed pion-number expansion.' 
Such an approach works with strictly time-ordered diagrams and arranges the theory 
according to the number of pions present at any given time. In addition to not making 
use of the simplification that removing the time-orderings yield and not explicitly 
including the cancellations that yield meaningful unitarity relations, this approach 
would stop for its lowest order at the first diagram in Fig. 1 which yields the first term 
of Eq. 11. The two factors l/u" would be associated with the interaction vertices. 
These would in turn provide very low momentum cutoffs, indicating a very long range 
for the meson-nucleon interaction. The sum of all the diagrams, however, replaces 
these factors with 1/uv This is the external energy, is completely independent of the 
integration variable, and thus does not contribute to the range of the interaction. 

Next let us allow the time D to come before A. Removing the time ordering 
of mesons that propagate between the two nucleons adds the backward going meson 
propagator to the forward going meson propagator / 

i    + _^m^**^. (12) 
U)0   — U) w0 -w w0 + u" Lüo      — W 

This simply converts the self-energy [16] from being the optical potential for the 



relativisitic Schrödinger equation to being the optical potential for the Klein-Gordon 
equation. 

The next question that would then arise is can we allow the time B to come before 
A (or D before C)? The diagrams as drawn always have the produced meson leaving 
before the incident meson arrives. This means that the piece of the meson-nucleon 
two-body scattering amplitude included is the crossed or U-channel pole. Allowing B 
to come before A would introduce the direct or S-channel pole part of the two-body 
amplitude. In the limit of an infinite nucleon mass, the two contributions produce 
indistinguishable results and simply combine. Keeping a finite mass for the nucleon, 
however, produces an interesting and important difference [17] between the crossed 
and uncrossed pole contributions. The crossed pole gives a contribution proportional 

i 

-u.-E„{k»)-\EB\ • 
while the direct pole gives 

u0-EN(k")-\EB\ ' 

where EM(k") is the kinetic energy of the nucleon and EB is the binding energy of the 
nucleon. These factors replace the l/w0 that occurs in the infinite nucleon mass case 
as in Eq. 11. The change in sign of w0 has physical consequences. In integrating over 
the momentum k", the integration for the direct pole is singular. This is because this 
diagram can contribute to true meson absorption. On the other hand, the crossed 
pole propagator is never singular; it can never contribute to true meson absorption. 
Not distinguishing between the different off-shell behavior between the direct channel 
and the crossed channel led to some unusual results in [18] and posed a question which 
went unanswered until [17]. This different off-shell behavior for the direct and crossed 
parts of the amplitudes means that the two time orderings for times A and B must 
be treated separately. 

There remains some very interesting questions that can be addressed within the 
framework developed in [14]. Only the simplest uncrossed and crossed diagrams, the 
S-channel and U-channel nucleon pole diagrams, were examined in [17]. How does 
this off-shell behavior generalize to any U-channel and S-channel singularities? How 
important in the calculation of cross sections is this off-shell behavior? What does 
this imply for crossing symmetry in the many-body problem? The general scattering 
amplitude is a function of four time variables, while the non-relativistic amplitude 
is a function of only two time variables. What are the off-shell implications of this 
quite general feature? Work is under way to understand each of these questions. 

4. RESULTS FOR K+-NUCLEUS SCATTERING 

The physics question we would like to address is whether the nucleon changes 
its character when embedded in the nuclear medium. The best probe to address 
this question is a short-ranged and weakly (in the sense of 'strength' not 'type') 
interacting projectile. In the limit of a very weak interaction, the total cross section 
on a nucleus would become just A times the spin-isospin averaged two-body total 



cross section. Deviations would imply a modification of the two-body interaction by 
the nuclear medium. The closest nature comes to this ideal situation is the K+. The 
K+-nucleon total cross section is in the 10 to 20 mb range. Pions above the A33 are 
the second weakest of the strongly interacting particles. Although there are broad 
resonance peaks, the total interaction is relatively independent of energy and has a 
typical total cross section in the range of 20 to 30 mb. 

Working with a probe where the meson-nucleus total cross section is near A 
times the two-body cross section has a great advantage for the theorist. In this 
region, the second-order corrections, which are proportional to the square of the 
two-body amplitude, are small. Since the higher-order corrections are the largest 
uncertainty in the theory, it is best to keep them as small as possible. In addition, 
the second-order corrections contain an additional propagator so that going to high 
energies will also help to minimize the theoretical uncertainties. A simple estimate 
of the ratio of the second-order optical potential to the first-order is given by [19] 

*=w>-*i>- (13) 

where a is the total two-body cross section, £c is the correlation length, and p is the 
density at which the projectile interacts. The factor l/k, where k is the incident 
pion momentum, arises from the extra propagator in the second-order potential. For 
pions on resonance, we find R « 0.1. R is less than one only because the density 
at which the interaction is taking place is small. For K+, R « .01, and for pions at 
500 MeV, R « .04, and at 1 GeV, R « .02. We thus expect second-order correlation 
corrections to be only a few percent. For other corrections, one can substitute the 
appropriate two-body cross section a and the appropriate length scale £ to achieve a 
similar estimate. 

Another advantage of a weak two-body interaction is that the projectile will 
penetrate further into the nucleus. Because the modifications to the nucleon should 
increase with nuclear density, it is important that the projectile see nucleons in a 
region where the density is substantial. A simple estimate of how far a projectile 
penetrates into the nucleus can be found from the arguments [20]. This argument 
states that the radius of deepest penetration is equal to the impact parameter where 
the profile function of the target just equals one mean free path for the projectile. In 
[21] it is shown that the K+ can just penetrate to the center of 4°Ca and to the half 
density point of 3o8Pb. The pion at 700 MeV makes it to the center of 13C but only 
to the half density point of 4°Ca. 

Thus the high-energy pion and the K+ are the best possible probes among the 
strongly interacting particles to investigate the possibility that the nucleon is mod- 
ified in a fundamental way when it finds itself in the nuclear medium. To examine 
modifications of the properties of excited hadrons in the nuclear medium, the projec- 
tile must create these hadrons in the nucleus. These excited hadrons were discovered 
by their production in the pion-nucleon reaction. Thus high-energy pions are again 
a logical choice for the projectile. Electrons and photons can also be used. 

Although the K+ is the best probe, there is a limited amount of K+-nucleus data. 
Elastic data [22] led to the first indications [23,24] that theories would consistently 
under-predict the data. However, there is a 17% systematic error in the normalization 
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Figure 2. The total cross section ratio defined in Eq. (14) for 4He, 6Li, and 13C as 
a function of the laboratory momentum of the K+, Pja&. The data are from [25] and 
the curves are the results of the first-order optical potential utilizing the relativistic 
momentum-space code ROMKAN. 

of the data and a discrepancy of about twenty to 30% between experiment and 
theory. The short lifetime of the K+ makes it very difficult to ascertain the absolute 
normalization of data. Ratios of cross sections are thus much more reliable. The 
total cross section for a nucleus divided by the total cross section for the deuteron is 
such a measurement. In Figs. 1 and 2, we present results for K+ scattering from a 
variety of nuclei. The data are from [25]. Presented is the ratio 

r = 
crt(A)/A 

(14) 

We see that there is an energy independent and nearly target independent discrep- 
ancy between the theory and the data. The discrepancy found is almost independent 
of the details of the theoretical calculation. Indeed, a calculation [26] based on the 
Kemmer-Duffin-Petiau equation also produces rather similar results. This can be 
understood by noticing that a simple eikonal model [27] produces results that are 
close to the full momentum space calculation. This implies that off-shell effects, the 
Fermi integration, and other features of the momentum-space calculation are not 
overwhelmingly important. This is supported by noting that the ratios of cross sec- 
tions in Figs. 1 and 2 are all close to one. What the theorist is'calculating is actually 
the difference from one. A constraint on a reasonable theoretical calculation is that 
the Born approximation to the optical potential gives for the total cross section nearly 
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Figure 3. The same as Fig. 1 except the targets are l60, a8Si, and 4°Ca. 

A times the spin-isopin averaged two-body total cross section (in the absence of 
Coulomb-nuclear interference). This is trivially true for the eikonal model. For the 
momentum-space approach the Born approximation to the optical potential contains 
a Fermi-averaging over the two-body total cross section. If the Fermi averaging 
is approximated [281 according to the 'optimal factorization' prescription, then the 
momentum-space results yield, in Born approximation, A times the two-body cross 
section evaluated at a small energy shift given by the difference between the average 
binding energy of the nucleons and the mean spectral energy. Given that the theories 
are only calculating these small differences from A times the two-body cross section 
and the shadowing that results from iterating the optical potential in an integral 
equation (only about a 5% effect), the agreement among theorists is not surprising. 

The discrepancy which we find is about 20%. This may be viewed as caused 
by a modification of the nucleon when in the nuclear medium. Total cross section 
measurements cannot discriminate among models [24] which would simply increase 
the two-body scattering amplitude in the medium in an energy independent way. 

Mesons exchange currents are a possible mechanism that could account for this 
discrepancy. The results of [29] would indicate that this is not the case. There 
it was found that exchange currents are both too small and would have a rapid 
energy dependence as the energy is increased above the threshold for pion production. 
Enhanced mesonic clouds resulting from reduced mesonic masses in the nucleus [30] 
would increase this contribution, but the pronounced energy dependence, not seen 
in the data, would remain. A calculation which removes the static approximation 
in calculating the exchange currents and adds scattering from short and mid range 
correlations [31] yields a much larger effect, an effect that is of the order of the 
discrepancy between the theory and the data.   Further investigation is needed to 



understand if the approach of [31] can produce results which are quantitatively in 
agreement with the energy and target dependence of the data. 

Elastic differential cross sections would provide additional information on the 
origin of the observed discrepancy. It was the differential cross sections measured in 
[22] that lead to the original observation [23,24] of a possible discrepancy. However, 
the systematic error in the data is given as 17% and the discrepancy [27] is nearly 
independent of angle. The possibility of a systematic normalization error somewhat 
larger than that quoted would resolve the problem. Thus, this data did not pro- 
vide a clear and convincing argument for a discrepancy. The measurement of elastic 
differential cross sections with an absolute normalization of 5% would be most use- 
ful. However, the short lifetime of the K+ has so far prevented measurements with 
absolute normalizations at this level. 

Recent data [32] takes an interesting approach to this problem. The rms radius 
of 6Li and 13C are nearly equal, with 6Li having the slightly larger radius. Roughly 
13C is twice as dense as 6Li. In the forward direction the details of the density should 
make little difference. Thus one can take the ratio of elastic differential cross sections 
between these two nuclei and in the forward direction one would be examining the 
density dependence of the mechanism that is causing the discrepancy. In Fig. 1 we 
see that the less dense 6Li appears to produce a smaller discrepancy for the total cross 
section than is seen in other more dense nuclei. The measurements of [32] confirm 
this observation. 

Similar results have been found [33] for high-energy pions. There does not exist a 
phenomenological explanation for this discrepancy that is consistent with all existing 
data. A model which is predictive in character is needed. The application we have 
used for our covariant many-body theory has lead to some intriguing results. We 
have been interested in the elastic scattering problem. However, the approach is 
quite general and can be used in any many-body problem. 

This work was supported, in part, by the US Department of Energy and the US 
Office of Army Research. 
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ABSTRACT 

This paper presents the explicit temperature evolution of a modified Hubbard Hamiltonian 
pertinent to the understanding of superconducting, anti-ferromagnetic and ferromagnetic phases 
of a system within the framework of the Maximum Entropy Principle and without making any a 
priori assumption about the pair formation or alignment probabilities at a site. In this paper we 
discuss two cases, which depend on whether or not the ratio of the strength of magnetization to 
twice the hopping term prevails over the combined influence of the mean field plus the pairing 
term. In the former case (situation 1), the system prefers to be ferromagnetic below a critical 
temperature, while in the latter (situation 2) the system tends to form pairs below a critical 
temperature. Calculations are presented for sets of parameters corresponding to both situations. 
In situation 1, the system changes from a ferromagnetic phase to an anti-ferromagnetic phase 
with the increase of temperature. The model predicts that the critical temperature for this 
transition increases with the introduction of an external magnetic field as observed 
experimentally. On the other hand, adjustment of the controlling parameters leads the system to 
situation 2 when pair formation is preferred below critical temperature which may be relevant to 
superconductivity. 

1. INTRODUCTION 

Traditionally, materials have been classified as conductors, semi-conductors and insulators 
depending upon their electric transport properties. While a great many materials can be ascribed 
to one or the other category, others instead, when properly doped, seem to cross lines and move 
from one category to another. In particular, certain compounds of perovskite structure have, in 
the last decade, acquired prominence in light of their ability to undergo modulations of their 
electric transport properties over an unprecedented variety of scales as a function of temperature. 
More specifically, it is remarkable and intriguing that seemingly diametrically opposite 
phenomena, such as high-temperature superconductivity [1] and colossal magnetoresistance [2-7] 
may find manifestation in the same class of materials, depending on the concentration of certain 
specific dopants. From a theoretical point of view, therefore, it would be of interest to devise a 
framework capable of encompassing both aspects, allowing one to shift continuously from one 



type of behavior to the other simply by modulating suitable controlling parameters. 
Hence, in the present paper, we examine the possibility of developing a unitary description of 

a system which may be transformed from one type to another by a set of controlling parameters. 
We note that both superconductivity and colossal magneto-resistivity or CMR deal with dramatic 
variations of resistance as a function of temperature and applied magnetic field. Consequently, 
one is to develop a theory that explicitly allows for the temperature evolution of a dynamic 
system. The Maximum Entropy Principle or MEP allows one to reach that goal. In section 2 we 
describe a model relevant to study the relation between these controlling parameters and the 
occurrence of ferromagnetic, anti-ferromagnetic and paired states at different temperatures. We 
investigate the probability of pair formation as a function of temperature without any assumption 
of their existence a priori. The controlling parameters that determine whether the system at low 
temperature manifests pair formation or spin alignment are discussed for specific cases in 
section 3. 

2. THE MODEL 

We adopt the following Hamiltonian, which may be regarded as an extended version of 
Hubbard's, in the sense of [8]: 

H * £ E{W-, + (BfiO) + M)ndi + U(i)rt + fA2(i) (1) 

where we have used the following notation: 

A. ü n., + n;i ;     ndi = n,., - An ;     r ^ n.,n(, ;     n., = 4cn ;     n(i * c?]Cii 

The c, c\ in terms of which all of the above operators are expressed, are creation and annihilation 
operators obeying canonical anti-commutation rules, namely: 

{V;!} = [cti>cj] = 6u 

while all the other anti-commutators vanish. 
As for the subscripts below the c's, the up and down arrows refer, respectively, to the (Vift 

and (-Vzyt\ value for a spin's component along an arbitrarily chosen direction, whereas the i 
subscript denotes the i-th "site," in the following, generalized, sense: let a complete set of 
commuting observables be associated to each spin-carrying "particle," including the spin degrees 
of freedom themselves. As it is well known, all such observables can, simultaneously, possess 
well defined values. Any set of such values, minus the spin degrees of freedom, constitute, in the 
present context, a "site." Clearly, one may regard a site in physical space as but a particular case 
of the above. The quantities in (1) yet undefined are all scalars, whose meaning and units are 
indicated subsequently, where we elucidate the role of the individual terms of the Hamiltonian. 

As we intend to develop a finite-temperature theory, the relevant physical quantities are to be 



calculated by the methods of statistical mechanics. We choose to analyze (1) by means of a 
procedure stemming from the Maximum Entropy Principle (MEP), in the manner of Proto and 
her collaborators [9-11]. The gist of the MEP may be enunciated as follows: 

Among all density matrices   p   compatible with the information available about the 
physical system under scrutiny, one is to select the one which maximizes the information- 
theoretic entropy, S: 

5 = -fcflrr(jMnp) (2) 

kB, in (1) is Boltzmann's constant and is henceforth set equal to 1. The basis for the latter 
requirement is that such a density matrix would lead to the least biased estimates (in the sense 
of estimation theory) of the relevant physical quantities.   In general, the density matrix derived 
from the solution of the above extremization problem acquires the following form: 

n 

p = exp(-£ kkAk) (3) 
* = o 

In (3) the   A 's    are designated as the Relevant Operators relative to the problem being 
studied and the Vs are Lagrange multipliers corresponding to the auxiliary conditions whereby 
the density matrix is to yield the desired expectation value of the operators. 

In our case, we select the following as the Relevant Operators (I = unit operator): 

A0 = /;     A, = ht = £(/)>?; + (Bom + M)ndi + U{i)r{ + fA2(i); 

A2 = ni;   A3 = r,.;   A4 = ns 

In terms of these Relevant Operators, we can write (3) in the form: 

p = expC-X/ - ß£. - X2nr X3r. - X4ndi) (4) 

As the subscript i is being held fixed, (4) cannot represent the density matrix of the overall 
system. However, our way of proceeding is still meaningful in that, being the total Hamiltonian 
(1) a sum of uncoupled terms, the overall density matrix acquires a diagonal-block structure, of 
which (4) simply constitutes the i-th block, also associated with the i-th site. Henceforth, the 
subscript i is going to be dropped. The mean values (or thermodynamic averages) of the relevant 
operators are given by: 

dXn 
<h> =  (5a) 

aß 



ex, 
<*> - -^ (5b, 

dk. 
<t> - -^ (50) 

Identifying   h    as the energy leads to the interpretation of its corresponding multiplier, ß, as the 
reciprocal of the absolute temperature T. Considering that (2) represents nothing but the mean 
value of the operator   (-lnp), the expression (4) permits us to write the entropy S as: 

S = A.0 + ß<Ä> + \2<n> + X3<f> + k4<nj> (6) 

On the other hand, combining (6) with the thermodynamic expression for the Helmholtz free 
energy F given by 

F=U-TS = <ti>--, (7) 

we are able to obtain: 

F = —- - X2<A> - A.3<r> - X^Kn^ (8) 

For the purpose of evaluating the preceding mean values, and thereby the relevant 
thermodynamic functions, the following basis is chosen: 

I3> = c/c*!()>;      I2> ^(l/v^Xc/ -c,+)IO>;   ll> = (l/^Xc/ + c/)IO>;   I0>       (9) 

where I0> is such that 

c,IO> = CjlO> = 0 (10) 

After expressing the relevant operators in matricial form, the MaxEnt density matrix can be 
readily written down by means of (4). Its diagonalization is straightforward, as the only off- 
diagonal terms belong to a two-by-two submatrix. The subsequent step is to impose the 
normalization condition Trp = 1,     whence X0 can promptly be extracted as a function of the 
remaining multipliers, as such: 



X0 = -ß*A2 + ln{l + e -»*' h ' m + V) * 2e ^ " P£cosh[ß(50A + M) + X,]}      (11) 

At this point, a brief discussion is in order as regards the Lagrange multipliers. Among the latter, 
ß has already been discussed and is considered, henceforth, as an independent variable. As for 
the others, they are associated with mean values about which no information is available a priori. 
The least biased estimates of such mean values are obtained, in general, by setting their 
respective multipliers equal to zero. 

According to (5a) to (5d), we obtain the following mean values by differentiating A,0 given by 
(11) and setting ^ = A.3 = k4 = 0 afterwards: 

e-P(i/ + 2£) + e -ß£C0sh[ß(5nA + M)] 

I + g-Ki/*2fi) + 2e -P£cosh[ß(B0A + M)] 

e -WJ * 2£) 

"  1 + e-P(^ + 2£) + 2e-P£cosh[ß(ß0A + At)] (13) 

sinh[ß(ß0A + M))e ~p£ 

^^ " "   l + e-P<^ + 2£) + 2e-P£cosh[ß(ß0A + M)] (14) 

<h> = E<A> + (50A + M)<nj> + U<f> + tL2 (15) 

The parameters E, B0, U, M, and t in (15) refer, respectively, to the strength of the average 
values of relevant operators multiplying them and are to be chosen from the physics of the 
materials to be studied. They are either given in energy units or in a dimensionless form. We 
may note that some of these parameters could be a function of momentum, k. 

The parameter A merits special attention. Unlike its peers, it is to be determined by 
imposing that the Helmholtz free energy, as a function thereof, be a minimum. To that end, we 
express F by combining (6), (7), (12), (13), (14) and (15), obtaining the following expression: 

ß*A2 - ln[l + e-^u + 2E) + 2e-P£cosh(ß(ß0A + M))] 
F -  (16) 



equation: By minimizing F with respect to A, one obtains the following transcendental 

It "'" (17) 
A . -_<W 

Now, in order to facilitate the interpretation of the numerical results presented in section 1 we 
proceed to comment on the various terms in the Hamiltonian     «mST» ' 
the total number of particles located at the «Ä ^ZQ^IT^ * 
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3.1 Case when B/2t is greater than IU + 2EI 

Aside from these four parameters, the system's behavior at a particular temperature T is 
determined by the Helmholz free energy, F. As noted earlier, the thermodynamic stability of a 
system corresponds to the absolute minimum of the free energy in terms of A. Hence, the 
investigation of temperature evolution of a system is tantamount to studying the dependence of 
the absolute minimum as a function of temperature. In the first case the key parameters E and U 
are taken to be 0.9eV and -1.84 eV which is typical for an insulator or semi-conductor at zero 
temperature. B and t are, then, taken to be 1.84 x 10"2eV and 9.0 x 10'5eV and at first we 
consider the system in the absence of any external magnetic field i.e., we set M=0. In 
dimensionless form, these parameters are E = 200, U = -410, B = 4.1, t = 0.02 and M = 0. Thus, 
B/2t = 102.5 is much greater than I2E +TJI = 10. 

The free energy F, for this case, is exhibited in Fig. 1, as a function of A at T = 26.1°K or in 
dimensionless units T = 0.5. The symmetric pattern of F about A = 0, simply reflects the spatial 
symmetry between the upward and downward directions; the solutions for positive and negative 
A correspond, respectively, to <n>di = -1  and +1. For the purpose of this discussion, it is, 
therefore, sufficient to consider the dependence of F on either positive or negative A. F has 
clearly a number of local minima but the absolute minimum occurs at a large value of ±A. An 
analysis of (13) and (14) implies that the system is ferromagnetic for large A. In fact for a large 
value of A,   <f> ~ 0 and <nd> = 1    implying a net alignment. 
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Figure 1. Free energy as a function of A for the case 3.1 at 26.1°K where ferromagnetic phase is 
preferred. 
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Figure 2. Free energy as a function of A at the transition or critical temperature 162.2°K for the 
case 3.1. 
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Figure 3. Free energy as a function of A at 523°K, i.e. above the transition temperature for the 
case 3.1. 



In Fig. 2, the free energy plotted as a function of A for a higher temperature T = 162.2°K 
indicates three equal minima including one at A = 0. The minimum of A = 0 becomes an 
absolute one at a still higher temperature T = 187.8°K or in dimensionless form T = 3.59 as 
shown in Fig. 3. The insertion of A - 0 into (13) and (14) leads to <r> * 0 and <nd> - 0 
signifying a vanishing net spin and partial or total anti-alignment at the i-th site. The transition 
or critical temperature is the one corresponding to the situation depicted in Fig. 2 and is 162.2°K 
or in dimensionless form T = 3.1 for this system. Experimentally, the ferromagnetic and anti- 
ferromagnetic phases are characterized by low and high resistivity. 

The introduction of an external magnetic field, corresponding to a non-zero value for M, 
removes the symmetry of F about A = 0 because it favors one spatial direction over the other and, 
and more importantly causes an upward shift of the transition temperature. The magneto- 
resistive effect, in our model, can thus be observed in the temperature domain between the lower 
Tc corresponding to the absence of an external magnetic field and the higher Tc obtained when a 
field is present. This is because in this temperature zone, an anti-ferromagnetic system 
exhibiting high resistivity in the absence of an external magnetic field can be driven into a 
ferromagnetic phase characterized by low resistivity by a sufficiently intense applied magnetic 
field. The introduction of such a field would have, on the other hand, little effect on the 
resistivity below the Curie temperature. 

The suddenness of the transition from one phase to another appears to be in contrast to the 
gradual change observed in experiments. One may, however, note that the calculations presented 
here refer to a single site while actual measurements reflect bulk properties. The transition 
temperature is very sensitive to the input parameters and a modest variation of these from site to 
site could well account for the observed graduality of Tcby performing an appropriate averaging 
procedure. 

3.2.     Case where B/2t is smaller than IU + 2E1 

Turning our attention to a case where B/2t is less than IU + 2EI, we choose 
E = 1.032 xlO"2 eV, U = -4.128 x 10"2eV, B = 1.548 x 10"2 eV and t = 0.516 x 10"2 eV and M = 0. 
In dimensionless units this corresponds to E = 1, U = -4, B = 1.5, t = 0.5 and M = 0. Thus, B/2t = 
1.5 which is less than IU + 2EI = 2. In this situation, the system manifests itself in an anti-aligned 
state below a critical temperature. In this circumstances, the system evidently possesses a 
vanishing net spin at the i-th site, which may be interpreted as pair formation characteristic to a 
superconducting phase. This is depicted in Fig. 4 where the free energy at T = 1.2°K is plotted as 
a function of A and exhibits an absolute minimum at A = 0. Fig. 5 displays the number of pairs 
per site as a function of temperature, with the pair formation probability dropping sharply at a 
temperature greater than T = 1 in dimensionless units corresponding to T = 120°K. 
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Figure 4. Free energy as a function of A at 1.2°K, i.e. below the transition temperature for the 
case 3.2 where anti-alignment or pairing is preferred. 
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FIGURE 5. Number of pairs   <f>    at a site as a function of temperature. 
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In our investigation, the ratio between |U| and kBTc is to lie approximately between 3 and 5 
for a transition relevant to superconductivity to occur. Furthermore, there is no upper limit to 

this T„. 

4. CONCLUSIONS 

The present analysis demonstrates that the same Hamiltonian has the ability, depending on 
the choice of parameters, to produce at least two different sorts of phase transitions, one relevant 
to magnetoresistance (colossal or otherwise), and the other arguably relevant to 
superconductivity. One behavior may be made to merge smoothly into the other merely by 
varying continuously the concomitant parameters. The latter acquires particular signficance in 
light of the fact that both behaviors are exhibited by the same class of materials. Doping may 
well be the experimental technique of choice to "push" the materials either into the 
magnetoresistive or the superconductor-like behavior. 
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The discovery of superfluidity in liquid 4He below T\ = 2.17°K, and its phe- 
nomenological characterization since then, has been one of the great success stories 
of condensed matter physics. The relation of superfluidity to the behavior of atoms 
was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose 
condensation of helium atoms, the extensive occupation of the zero momentum state. 
Ever since 4He has been the paradigm in the search for Bose condensates in other 
systems. At the Pune meeting we have heard exciting new evidence for Bose conden- 
sates of laser cooled alkali atoms in magnetic traps [1], of excitons in C112O [2], and 
possibly pre-formed Cooper pairs of electrons in the high Tc perovskite superconduc- 
tors [3]. There remains the holy-grail of forming a Bose condensate in spin-polarized 
hydrogen [4]. 

Laser cooled alkali atoms in magnetic traps [1] are much closer to ideal Bose 
condensation than superfluid 4He. The densities are low, interaction effects are small, 
and they can be approximated as a weakly interacting dilute Bose gas. The fraction 
of atoms n0 condensed in the zero momentum state proceeds from zero at a critical 
temperature T = Tc to nearly one at T = 0°K. The momentum distribution n(p) 
has a ^-function spike at p — 0 with an integrated intensity of n0. The momentum 
distribution can be measured by experiments in which the magnetic trap is released, 
allowing the velocities of the escaping atoms to be observed by time-of-flight. The 
results conform to expectations within small corrections. Very recent experiments 
have discovered quantum coherent phenomena such as the atomic equivalent of lasing 
and quantum interference between two traps. 

In contrast, liquid 4He is a strongly interacting Bose system. That complicates 
the experimental verification of F. London's prediction that the superfluid transition 
should be associated with an n08(p) spike in n(p). The strong interactions dra- 
matically alter n(p) from an ideal Bose gas. Sophisticated many-body calculational 
methods, such as Greens Function Monte Carlo [8] (GFMC) for zero temperature and 



Path Integral Monte Carlo [9] (PIMC) methods for non-zero temperatures, have been 
developed for such problems. They predict an n0 of only about 0.10 at T = 0°K. 
This small value contrasts with alkali Bose condensates where n0 is near one. The 
90% non-condensate 4He atoms undergo quantum zero-point motion with momenta 
spread over a width of about 1Ä-1. 

In the current excitement for new types of Bose condensates, and new phenom- 
ena such as atom lasers, it may be useful to recall the older story of the experimental 
verification of a relation between superfluidity and Bose condensation in 4He. This 
topic has been investigated over many years by neutron scattering experiments and 
quantum many-body theory. My goal is to illustrate the difficulties of establishing 
the existence of a Bose condensate in a strongly interacting system, even though its 
macroscopic effects are manifest. I assume readers have access to a review by Silver 
and Sokol [5] which emphasizes the neutron scattering theory through 1990 and a 
review by Snow and Sokol [6] of the deep inelastic neutron scattering (DINS) (or 
neutron Compton scattering) experiments through 1995. Another good source is the 
1989 book Momentum Distributions which addresses related Compton scattering ex- 
periments throughout physics. These reviews present the details, equations and data. 
I focus here on the key concepts, the current status and some recent developments. 
The insight gained may also be useful for other momentum distribution studies. 

Direct experimental observation of n(p) in 4if e has proved elusive. It can not 
be measured by kinetic experiments on escaping atoms, because AHe is self bound. 
Hohenberg and Platzman [10] suggested in 1966 that the best hope for measuring 
n(p) is DINS. This is the neutron analogue of X-ray Compton scattering measure- 
ments of electron momentum distributions in solids and molecules. But after decades 
of effort and hundreds of research papers, the conclusion reached is that the strong 
interactions among 4#e atoms invalidate a simple impulse approximation (IA) in- 
terpretation of DINS experiments. The Bose condensate ^-function predicted in the 
dynamical structure function by the IA is irretrievably broadened. Only circumstan- 
tial evidence remains for a correlation between superfluidity and Bose condensation 
in 4He. It consists of excellent quantitative agreement between experiment and ab- 
initio many-body theories, which predict a Bose condensate. But this requires a more 
sophisticated theory for what DINS measures than the IA. 

More generically, deep inelastic scattering refers to experiments in which a high 
energy probe particle scatters at sufficient energy hu> and momentum fiQ transfers 
that the incoherent dynamical structure function for single particle scattering dom- 
inates the coherent structure function for interference scattering between particles. 
For this concept to be applicable to neutron scattering from 4iJe, Q and u) must be 
much larger than the scales set by the phonon-roton spectrum or the static structure 
function, S(Q), related by Fourier transform to the radial distribution function g(r). 
This scale is approximately Q > 5Ä-1. The impulse approximation (IA) to deep 
inelastic scattering further assumes that a target particle recoiling from a scatter- 
ing event has high kinetic energy compared with potential energies with neighboring 
particles. This is an excellent assumption for x-ray Compton scattering studies of 
electronic momentum distributions in solids, and for electron scattering studies of 
subtructure of nucleons in high energy physics. The IA incoherent structure function 
S(Q,u) has a simple integral relation to single-particle momentum distribution n(p). 
The Compton profile J(Y, Q) = QS(Q, u>) is a universal function of a scaling variable 



Y = (w - hQ2/2M)/Q and independent of Q [11]. For DINS from liquid 4#e, a 
condensate would produce a n05(Y) peak in the Compton profile, corresponding to a 
peak in S(Q,u) at the recoil energy u = hQ2/2M with integrated intensity propor- 
tional to n0. This prediction provides motivation to use DINS experiments to study 
the relation of Bose condensation and superfluidity in AHe. 

Unfortunately, this IA ideal can not be reached for liquid 4He at any feasible Q 
due to final state effects (FSE). Even though experimental Q's can now reach deep 
into the DINS range, interactions of the recoiling helium atom with neighboring atoms 
broaden the Compton profile. This broadening may be represented as a convolution 
of JIA(Y) in Y with a FSE broadening function R(Y, Q). The combination of a FSE 
theory and quantum many-body calculations of n(p) yields quantitative predictions 
for neutron Compton profiles. The remarkable story of Monte Carlo and quantum 
many-body calculations of n(p) has been told elsewhere [8,9]. In these proceedings, 
I emphasize developments in the theory of FSE, and the comparison of recent DINS 
experiments to theory. 

The first physical picture of FSE was presented by Hohenberg and Platzman 
[10] in 1966. A helium atom recoiling from a neutron scattering event has a collision 
lifetime with neighboring atoms, 1/r = hQpa(Q)/M. Here p is density, a(Q) is the 
He-He cross section and M is mass. R(Y, Q) would be a Lorentzian in Y of width 
AF = pcr(Q). If the 4He-4He potential had a hard core, such that a(Q) went to 
a constant at high Q, the Compton profile would obey Y-scaling without satisfying 
the IA. The IA would not be valid no matter how high the Q. The actual <r(Q) has 
been measured and found to decrease slowly with increasing Q (approximately log- 
arithmically), modulated by 'glory' oscillations resulting from quantum interference 
between identical particles. The corresponding potential is steeply repulsive at short 
distances. The IA would be approached equally slowly with increasing Q, while the 
required instrumental energy resolution would scale as Afroo ex Q~x. The correspond- 
ing required neutron intensity increases approximately as Qz for most spectrometers 
providing an intensity limit to the achievable Q. 

However, this Lorentzian broadening FSE theory disagrees with experiment even 
for the normal fluid where the PIMC prediction for JIA{Y) is approximately Gaussian 
except as it tails off at large |F|. Normal fluid experiments are within a few % of 
the PIMC-IA prediction. The Lorentzian FSE theory predicts too much broadening 
as well as Lorentzian tails decreasing as 0(Y~2) at large |Y| that are not observed. 
A Lorentzian R(Y, Q) would also violate the kinetic energy sum rule which requires 
the second moment of the Compton profile to have the IA value. Thus, the sum rule 
requires the second moment of R(Y, Q) in Y to be zero. 

Another approach to FSE has been to develop additive corrections to the IA 
as a truncated power series in inverse powers of Q [12,13]. The first term in this 
expansion is the IA. The next term decreases as Q~x and involves the semi-diagonal 
two-body density matrix p2(r, r"; r', r"). It is natural (although, we shall learn later, 
incorrect) to assume that only the first few terms in this series are important at high 
Q, and therefore that FSE fall off as 0(Q_1). No such additive corrections to the IA 
can cancel a F-scaling Bose condensate ^-function. 

The empirical failure of the Lorentzian broadening theories in the normal fluid 
and the additive correction FSE theories decreasing as 0{Q~l) encouraged investiga- 
tion of n(p) by DINS at increasingly large Q [14]. Early reactor neutron experiments 



with their thermal neutron spectrum could not practically exceed Q = 12A"1. But 
the advent of pulsed spallation neutron sources in the 1980's with their high flux of 
epithermal neutrons enabled practical experiments at Q's up to 30Ä-1, well into the 
DINS range. 

Unfortunately, as we shall see, Nature frustrates any hope that FSE could be 
ignored at any feasible momentum transfers Q. The correct qualitative physics of 
FSE was first identified by Gersch and Rodriguez [15] (GR) in 1973. The positions 
of atoms in the ground state of liquid 4He are correlated as described by their radial 
distribution function g(r). They stay away from the repulsive core of neighboring 
atoms in order to minimize their energy. A high kinetic energy 4He atom recoiling 
from a neutron collision must travel a distance on the order of the first peak (« 3A_1) 
in the radial distribution function before it begins to scatter at the rate 1/r of the 
Hohenberg-Platzman theory. This significantly reduces FSE, but it does not eliminate 
them. FSE still scale like the cross section <r(Q). The GR quantitative calculation of 
FSE used an eikonal approximation for the scattering, a novel cumulant expansion 
of S(Q,u) involving again the semi-diagonal two-body density matrix p2, and an 
approximation to p2 in terms of the one-body density matrix pi(r, r') and the radial 
distribution function g{r). The resulting FSE broadening function R(Y, Q) is non- 
Lorentzian with a central peak for small \Y\, rapidly damped oscillations at large 
|F|, and a zero second moment in Y as required by the kinetic energy sum rule. 

Actually, the above description is a paraphrase in modern language of what 
GR accomplished. Their work was perhaps 15 years ahead of its time, phrased in 
different language, and largely ignored. One can speculate about the reasons. It 
was published prior to the realization of the general character of F-scaling in all 
Compton scattering (or deep inelastic scattering) experiments throughout physics 
[11]. It appeared at a time when the only experiments had been performed at the 
low Q's of reactor sources, and Monte Carlo and variational calculations of n(p) 
were not accurate. Their quantitative predictions were buried in an experimental 
paper which claimed to measure n0 ~ 0.02, in disagreement with both many-body 
theory and all subsequent experiments. Their step function approximation to the 
radial distribution function is unrealistic. The approach did not make contact with 
the more familiar methods of diagrammatic perturbation theory. In retrospect, their 
quantitative theory underestimated the FSE broadening. 

In 1987-89 the author [16] (S) developed a new approach to FSE using a Liouville 
projection superoperator expansion of S(Q,u) about the ground state wave function. 
The superoperator projected all single particle excitations of momentum transfer hQ 
above the ground state. The expansion was truncated at the level of p2, which 
again is approximated in terms of the g(r) and px in a somewhat different manner 
than GR. Although the expansion generates many terms, all terms which did not 
F-scale in the asymptotically high Q limit for hard core potentials are dropped. 
The theory has a perturbative representation as a Dyson equation in which FSE 
are vertex corrections involving additional single particle excitations. The two-body 
t-matrix is approximated by semiclassical methods which are accurate at high Q. 
The small parameter is a product of the t-matrix and p2 which is well behaved. The 
Dyson equation corresponds to an infinite order partial resummation of the additive 
FSE correction series. This resummation has an entirely different asymptotic Q 
dependence than the first correction to the IA in the additive series. 



The result is, like the GR theory, a convolution broadening R(Y, Q) of the IA 
Compton profile JIA(Y). Moreover, it may be described by a simple physical picture. 
The scaling variable Y is canonically conjugate to the distance traveled by a recoiling 
4He atom. The FSE broadening function R(Y,Q) is the Fourier transform of the 
classical scattering probability of no collisions as a function of this distance. This 
probability depends on real space correlations in the ground state wave function 
through the radial distribution function. The inputs required to calculate FSE are 
all known from experiment, so the theory has no adjustable parameters. The central 
peak of R(Y, Q) is about twice as wide in Y as the GR calculation. FSE effects on the 
normal fluid Compton profile are very small in agreement with experiment, because 
the IA profile is almost Gaussian and FSE do not alter the second moment of the 
Compton profile. But for the superfluid where the IA Compton profile is very non- 
Gaussian, the FSE broadening is sufficient to eliminate the distinct Bose condensate 
(^-function peak predicted by the IA. The Q dependence follows a(Q), so that FSE 
decrease very slowly with increasing Q. 

My theory appeared a year or two before the high Q experiments from the 
new generation of pulsed spallation neutron sources. These beautiful experiments 
are best described in the aforementioned review by Snow and Sokol [6] to which we 
refer readers. After correcting the data for instrumental effects such as resolution 
and backgrounds, there is almost perfect agreement within statistical error between 
experiment at Q = 23A-1 and ab initio predictions for J(Y, Q) obtained by com- 
bining GFMC and PIMC n(p) with the author's theory for FSE [16]. This is true 
even though the shape of the Compton profile varies significantly with temperature, 
becoming more sharply peaked and less Gaussian as lower temperatures. As g(r) 
changes little in this range, the same R(Y, Q) can be used at all temperatures to a 
good approximation apart from a simple linear scaling of the Y variable with density. 
Thus the experimental data are consistent with calculations that predict a Bose con- 
densate fraction n0 « 10%. The forward prediction of experiment by S-PIMC and 
S-GFMC theory is quite good at high Q [17]. 

Detailed comparisons with other FSE theories can be made assuming the n(p) 
calculations are correct [18]. There is dramatic disagreement with the IA theory at 
superfluid temperatures especially in the region near Y = 0 where the condensate 
would contribute. There is similar disagreement with additive FSE corrections that 
allow a condensate 5-function to persist. The broadening predicted by GR is about 
a factor two too small. 

Not everything is perfect, however. One unexplained discrepancy is a slight 
asymmetry in which the Y <C 0 (Y > 0) side of the Compton profile is slightly lower 
(higher) than experiment [6]. The agreement is not so good at smaller Q [19], as 
should be expected from the approximations employed. These discrepancies point to 
the need for further development of the DINS theory. 

The inverse problem of extracting n(p) and R(Y) from experiment in the pres- 
ence of noise, instrumental broadening, and backgrounds is ill-posed and more diffi- 
cult. One approach is to assume the FSE theory to be correct, and to fit a model 
form for n(p) that includes a Bose condensate with n0 as a parameter along with 
other known singular structures induced by the condensate. Using this model fitting 
approach, Snow and Sokol [6] report broad trends in the extracted values for n0 and 
the kinetic energy as functions of temperature and density that are in reasonable 



agreement with expectations. However, the error bars on n0 are approximately ±2% 
which are not small compared to n0 itself. With those errors it is impossible to say 
with precision that there is evidence for a sharp transition from zero to non-zero 
n0 as the temperature is lowered past T\. Indeed, the data below T\ may also be 
adequately fit by n(p) that is a sum of narrow and wide Gaussians that have no 
«"»-function. Attempts to extract R(Y, Q) assume, conversely, that the GFMC and 
PIMC calculations of n(p) are correct. The result is reasonably close to my theory at 
high Q, although there are differences in the damped oscillatory wings at large \Y\. 
There is no estimate of the statistical significance of those differences. 

The most serious theoretical criticism of the my approach to FSE has addressed 
the approximation to the semi-diagonal two-particle density matrix p2. Ristig and 
Clark [20] in 1989 pointed out that the my approximation, while satisfying the p- 
and q— sum rules on p2, does not satisfy other known properties such as symmetry 
and sequential relations. The different approximations of GR and by Rinat [21] 
also satisfy these properties to a limited extent. Ristig and Clark suggest a general 
structure for p2 based on hypernetted chain theory which satisfies all the known 
constraints including sum rules, symmetry and sequential relations. Unfortunately, 
this form has not yet been quantitatively used in my theory. 

Carraro and Koonin (CK) in 1990 [22] presented a calculation of FSE that did 
not depend on approximations to p2. They solved the scattering problem of a high Q 
recoiling atom moving in the instantaneous potential of a Jastrow approximation to 
the many-body wave function, the assumption being that neighboring atoms provide 
a static field. Their resulting R(Y, Q) has approximately the same width central 
peak as I predicted at high Q, and so they also agree well with experiment. There 
are some differences between the two predictions in the damped oscillatory wings at 
large \Y\, but the available experiments are insensitive. They also predict a more 
severe Q dependence, but the discrepancies between of both CK and S theories with 
experiment increase at small Q and are comparable in magnitude. 

In 1996 Mazzanti et al. [23] reexamined the GR theory using an HNC estimate 
for the semi-diagonal two-body density matrix p2 based on the earlier work of Ristig 
and Clark. They claim essential agreement between the GR, CK and S predictions 
for the width of the central peak of R{Y, Q) provided that a proper p2 is used in GR 
theory. Experiments are insensitive to somewhat larger differences between theories 
in the damped oscillatory wings at large |F|. In the original GR paper, their p2 

relied on a step function approximation to g(r) at r0 = 2.5Ä which gave too little 
FSE broadening. Mazzanti et al, note that a choice of r0 = 2.1Ä in the original 
theory would also yield good agreement with experiment and the CK and S theories 
for R(Y, Q). However, examination of the measured g(r) reveals that there is almost 
no probability for collisions at r = 2.1 A. 

Thus, today there are three different theoretical approaches that are in quantita- 
tive agreement about the magnitude and character of FSE at high Q. What remains 
to be tested is whether use of a better p2 in my theory would significantly alter its 
prediction. 

A focus of recent experimental work has been systematic studies as a function 
of Q [19,24]. Andersen et al. [24] in 1994 measured the FWHM (full-width-half- 
maximum) and peak position of S(Q,u) in the range 3 < Q < 12A-1. They observe 
at least four oscillations in the FWHM and peak position in both the normal fluid and 



the superfluid that appear to track the aforementioned glory oscillations of the He- 
He cross section. Their interpretation is that it provides model-independent evidence 
that final state effects are present in the data which vary like a{Q). However, the 
<5's are not large enough to ignore coherent scattering. The shift in peak position 
also suggests there are real part of the self-energy corrections to the IA in addition 
to the vertex corrections associated, in my theory, with FSE broadening. 

The most significant attempt to use Q-dependent data has been by Glyde and 
coworkers [25]. They fit the dynamic structure function to a cumulant expansion in 
the Fourier transform of Y (to paraphrase) using up to sixth order cumulants. They 
claim to separate the contributions from the IA and FSE by their differing Q depen- 
dencies. For example, we know that the second cumulant (moment) of the Compton 
profile is independent of FSE. But in the fourth moment the IA contributions are 
independent of Q varying as the fourth cumulant of n(p), while the FSE contribution 
varies as Q~2 with a coeffecient. proportional to the force-force correlation function. 
They claim to observe just such Q dependencies in the data. Such fits are used to 
simultaneously infer n(p) and R(Y, Q). 

Two comments on this approach may be offered. First, if 4He had a hard core 
potential, there would be no way to separate the IA and FSE contributions using 
differing Q-dependences as they would both F-scale. The cumulant expansion would 
not converge, e.g. in the fourth moment the force-force correlation function would 
be infinite as it would be the expectation of products of two ^-functions. Although 
the real He-He potential may not be hard core, it is steeply repulsive such that 
this cumulant expansion should converge slowly at high Q. It seems unlikely that 
only a few terms in the expansion provide an adequate description. This discussion 
is obviously related to the earlier controversy regarding additive vs. convolution 
theories of FSE. Second, prior work by Sokol and collaborators has found statistical 
evidence for the adequacy of a two Gaussian description of n(p). The data analyzed 
by Glyde et al. are not dramatically better, so the claim to determine many more 
parameters seems inconsistent. 

"Where there's smoke, there's fire." This old adage is good enough for me. I 
am sure about the correlation between Bose condensation and superfluidity. The 
empirical manifestations are overwhelming. We have achieved excellent quantitative 
agreement between ab initio theory and high precision DINS experiments. Further 
efforts to understand the 'smoke' should tell us more about the 'fire'. But for those 
who insist on "Seeing is believing!", a new approach other than DINS will be needed 
to directly observe a Bose condensate 5-function in the momentum distribution of 
superfluid 4He. 
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1. INTRODUCTION 

A program to produce a weakly interacting atomic gas of identical bosons in 
spin-polarized hydrogen (SPH) was started in the early 1970's with the objective of 
studying Bose-Einstein condensation (BEC). Although great progress has been made 
in the study of atomic hydrogen it has not yet been Bose condensed. By contrast, 
experimental efforts to Bose condense alkali gases began in the late 1980 s and a gas 
of rubidium was Bose condensed for the first time in 1995. Dramatic evidence was 
provided by the observation of the growth of the condensate density in the center of 
an inhomogeneous magnetic trap when conditions for BEC were met. In this paper 
we shall review the progress on spin-polarized hydrogen and compare this system to 

the alkalis. 

2. EARLY STUDIES OF SPH 

Under ordinary conditions found in nature, hydrogen is a very reactive atom 
and is found strongly bonded to other atoms. In particular the H2 molecule is very 
stable and requires 4.6 eV (52,000 K) of energy to be dissociated into two free 
atoms. In the hydrogen molecule the electron spins are in a singlet spin state. By 
contrast two H atoms in the triplet state (spin-polarized) interact weakly, with a 
potential minimum of about 0.55 meV (6.4 K), as shown in Fig. 1. The triplet 
hydrogen potential (3S) does not support a bound state; it has an effective re- 
pulsive interaction with an s-wave scattering length of 0.72 A. In spite of this, a 
gas of unpolarized hydrogen rapidly decays in density by 3-body recombination to 
form H2 molecules. Silvera and Walraven [1] devised a method to stabilize atomic 
hydrogen by producing a very low density gas of H in a room temperature dis- 
charge and fluxing it into a low temperature cell in a high magnetic field, B. 



3-3 

NUCLEAR     SEPARATION IAI 

Figure 1. (a) The singlet and triplet interatomic potentials of hydrogen according to 
calculations of Kolos and Wolniewicz [2]. (b) The hydrogen potentials on a magnified 
scale and in a magnetic field. 

Since the ratio of electron spin-down atoms to spin-up atoms is exp(/iB-S/fcBT), 
where ptB is the Bohr magneton, kB the Boltzmann constant, and T the temperature 
for large B/T ratio the equilibrium state of the gas will be spin-down, or the gas will 
be spin-polarized. The walls of the cell were covered with a film of liquid hehum 
to inhibit condensation on the walls where recombination can be more rapid. Since 
the H-He adsorption potential is very weak, only at very low temperatures, of order 
200 mK, does H begin to adsorb on the helium surface at densities such that 3-body 
surface recombination becomes important. 

When spin-polarized hydrogen was first stabilized, the achieved density was 
about 1014 cm"3 at temperatures of a few hundred miUikelvin. This was far from 
the conditions necessary for BEC given by 

Tc = 3.31 
mkß 

n 2/3 (1) 

For hydrogen with mass m = 1 amu at a temperature of 100 mK, the critical density 
n is 1 57 x 1019 cm"3. Intense efforts were started by several groups to achieve BEC. 
The progress is reviewed in detail by Silvera and Walraven [3] and we shall sketch 
the results here. Densities of order 5 x 1018 cm"3 were achieved by compressing a 
gas of SPH, but in this densitv range 3-body recombination becomes an important 
loss mechanism. Two problems arose. First, it was difficult to increase the density 
further due to the increased loss rate; more important, the large amount of energy 
released by recombination heated the sample to several hundred millikelvin. 

A second approach was to achieve BEC at low densities and low temperatures. 
With 3He on the surface, due to the lower adsorption energy, a gas of SPH could 



be cooled below 100 mK by thermalization with the walls. Thermalization is due to 
adsorption-evaporation of H atoms from the helium walls. However, at around 50 
mK the gas loses thermal contact with the walls. Atoms which stick to the walls 
reside for long periods of time; the surface density builds up and recombination on 
the surface heats the cell, again preventing the attainment of conditions for BEC. 

It was also realized that hydrogen atoms on the He surface form an almost ideal 
2-D gas as they are weakly bound to the He surface. This was recognized as a 
candidate for a new superfluid with a Kosterlitz-Thouless (KT) transition [4]. The 
critical temperature for a KT transition is given by 

Tc
KT = Th2aa/2kBm  . (2) 

where <ja is the superfluid surface coverage. The low-density relationship between 
the surface coverage a and the bulk density n is 

a- = n\thexp(ea/kBT) (3) 

where Xth = (2TTH
2/mkBT)1/2 is the thermal de Broglie wavelength and ea is the 

adsorption energy of H on He. Thus, by simply filling a cell with a density n, in 
thermal equilibrium, a 2-D gas of known surface density is also present. In the 
initial efforts to study this 2-D gas, high surface coverages were not achievable as 
the increased recombination heated the cell. A number of schemes were proposed 
to overcome the severe problems which were encountered and observe BEC at high 
densities [5 - 6] . However, the most important idea was from Hess [7] who proposed 
to build a magnetic trap and use magnetic forces to isolate SPH from the cell walls 
and thereby eliminate wall recombination. 

A static magnetic field does not have a spatial field maximum and therefore SPH 
atoms in the ground state cannot be trapped by such a field, but must be contained 
by the normal walls of a cell. In this configuration, wall recombination sets a limit 
to the achievable density and temperature. However, Maxwell's equations do allow 
a static field minimum and in principle isolation of the atoms from the walls. To 
further understand the trapping scheme we refer to the hyperfine diagram in Fig. 2. 
In the high field limit, the states labeled a and 6 are predominantly electron spin- 
down and are attracted to high fields where their energy is lowest. These high-field 
seekers were the states studied in the first experiments on SPH. States c and d are 
low field seekers and will be attracted to a field minimum. Thus, an experimental 
configuration with a field minimum can trap states c and d and isolate them from 
the walls of a cell. Hess et al. [8] built a trap with an Ioffe configuration: a radial 
field minimum due to superconducting race track magnets, with an axial minimum 
due to two solenoidal "pinch" magnets is shown in Fig. 3. 

Although both c and d-state atoms are initially trapped, the c-state atoms are 
depleted due to rapid spin exchange-scattering, leaving a gas of pure spin-up polarized 
atoms in the d-state. The density of the gas was in the 1013 - 1014 cm 3 range and 
the temperature of order 50 mK. The gas was then cooled by evaporative cooling. In 
this technique the field of one of the pinch magnets is reduced, which lowers the trap 
depth. Energetic atoms can escape over the magnetic barrier, while the remaining 
atoms thermalize to lower temperatures by elastic collisions. The field barrier can be 
continually reduced in height to achieve extremely low temperatures. The optimum 



(■r 11111111 11111 i 111 i) i i i 11 i i 1111 i i i i 1111 11 i ii|] 

1000 

•1000 - 

-1500 - 

r ■ ■. ■ i. ■ i.... i.... i.... i ■ 111111111111 

200     400     600 

B (gauss) 

800    1000 

Figure 2. The hyperfine energy levels of atomic hydrogen in a magnetic field. 

rate of lowering of the field is determined by the collision rate crenü, where <7e is the 
elastic scattering cross section and v is the collision velocity. 

Evaporative cooling is limited by inelastic spin-flip processes which become im- 
portant at higher density as the spin-flip rate is second order in n. As the gas cools 
the total number of atoms decreases but the central density increases. Spin-flipped 
atoms, mainly low energy atoms at the bottom of the trap, are ejected. However, 
if atoms are in the bottom of the trap where the density is high and the energy is 
lower than average, the gas heats subsequent to the loss of these colder atoms. This 
process sets a limit to the density and temperature in a trap. 

The closest approach to BEC of hydrogen in a trap was by Doyle et al. [9] who 
evaporatively cooled to ~ 100/iK, but were about a factor of 3 too high in temperature 
for BEC. This experiment stopped at this point due to detection sensitivity limits or 
inability to detect atoms when the total number of atoms in the trap was down to 
about 1010. 

3. COMPARISON TO THE ALKALIS 

In the mid 1980's techniques were developed to laser cool atoms to microkelvin 
temperatures. By the late 1980's atomic physicists became interested in using this 
tool to attain BEC. It soon became clear that laser cooling alone would be insufficient, 
as the minimum attainable temperatures and densities were inadequate for BEC. A 
double cooling approach was taken. Atoms were pre-cooled by means of lasers and 
then further cooled in a magnetic trap by rf evaporative cooling. In this technique 
evaporative cooling is due to an rf field which induces spin-flip transitions, selectively 
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Figure 3. A magnetic trap for hydrogen showing the axial magnetic potential. 

tuned to remove the most energetic atoms in the trap. BEC was observed in rubidium 
in 1995 by Anderson et al. [10] with about 104 atoms in the trap. Subsequently BEC 
was reported in Na [11] and Li [12]. 

There are two important reasons why the alkalis have enjoyed a successful path 
to BEC, compared to SPH. First, the alkalis have a much larger elastic scattering 
cross section than triplet hydrogen. The alkalis have ™w.«*^j1^ * 
order 25 - 50 Ä, whereas SPH has a, = 0.72 A. A figure of merit for the effec iveness 
of evaporative cooling is the ratio of cooling rate to the loss rate. Since the loss 
rate is mainly due to spin relaxation, which is roughly the same for the alkalis and 
hydrogen, the ratio of the figure of merits is proportional to the ratio of elastic cross 

sections (    t 2 

~ 103   . (4) 
.alkali 

hydrogen 

„alkali 

hydrogen 

The second advantage of the alkalis is detector sensitivity. A kalis m a trap are 
observed by illuminating the gas with a resonant laser beam and shadowing the gas 
onto a CCD detector. The sensitivity is 10's of atoms and in the first observation of 
BEC of order 104 atoms were detected with a high signal-to-noise ratio. By contrast 
this technique is not easily applicable to hydrogen which has its first optical transition 
in the far UV, not the visible. In the experiment of Doyle et al. [9] «^olometer 
detector was used with a minimum number of detectable particles (MNDP) ol 1U 



atoms. Thus, the alkalis have an experimental advantage for achieving and studying 

BEC. 

4. CURRENT EXPERIMENTS ON HYDROGEN 

In this section we shall discuss current or planned experiments on SPH at 
Harvard. There are two categories of experiments: 3-D traps and a 2-D KT-BEC 
experiment. There are two types of traps, a static trap and a microwave trap. Origi- 
nally the static trap was to be part of a hybrid static-microwave trap, with the static 
trap used to pre cool atoms so that they could be loaded into the shallow nncrowave 
trap With the recent development of more sensitive detectors it appears that BEC 
might be achieved directly in the static trap. The 2-D experiment is designed with an 
inhomogeneous magnetic field, which in principle should enable BEC to be observed 
in two-dimensions. 

5. THE STATIC TRAP 

The static trap is a flexible trap consisting of 11 superconducting magnet coils 
used for both the static and microwave trap. The cell, made of plastic (G10), is 
connected to the mixing chamber of a high cooling power Leiden Cryogenics dilution 
refrigerator; hydrogen is filled from a pulsed rf discharge. Helium which covers the 
walls of the cell and is important for the loading step, can be removed with a film 
pump" after the gas is trapped and isolated from the walls. This improves the 
performance of the detectors, two bolometers located at either end of the cell These 
bolometers, described elsewhere [13], are calculated to have an MNDP of between 
103 - 104 and atoms, or several orders of magnitude smaller than previously used 
bolometers in a trap. This large improvement is achieved by using state-of-the-art 
transmutation doped germanium thermometers to measure the heat released when 
hydrogen atoms recombine, and using geometric structures which capture a large 
percentage of the available recombination energy. We believe that these detectors 
will have sufficient sensitivity to detect crossing the critical n-T boundary for BEC. 
The density-temperature range in these experiments is expected to be 10 cm - 
microkelvin, as limited by dipolar spin relaxation. 

6. THE MICROWAVE TRAP 

The microwave (MW) trap utilizes the fact that a time varying magnetic field 
can have a field maximum. It is operated at frequencies in the vicinity of the Larmor 
frequency of the electron spins where the trap potential is deepest. By operating at a 
frequency below resonance, states which are predominantly spin-down (a or 6-states) 
can be trapped and thereby suppress the spin relaxation losses by a Boltzmann factor. 

The MW trap is most easilv analyzed using the dressed state formalism. Atoms 
in the presence of an electromagnetic field characterized by a photon mode occupation 
at frequency u near the transition frequency u0 between states, say \c) and |6) are in 



dressed states 

|1) = cos0|c) ® I.V - 1) + sm$\b) ® \N)   , 

|2) = -sinöjc) ® |JV - 1) +cosö|6) ® \N) (5) 

Here |2) is a trapped state and |1) is an anti-trapped state. The depth of the trap 
on resonance is given by 

U = hficbBmw/2  . (6) 

where Bmw is the microwave field amplitude and ficb is a dipole matrix element 
between bare states c and b. On resonance the states |1> and |2) are equal admixtures 
of states b and c. As the detuning, 8 = w - w0, is increased or decreased from zero, 
the depth decreases as shown in Fig. 4, however, the admixture becomes dominated 
by one bare state or the other. 

5/ta    (dimensionless) 

Figure 4. The microwave trap potential for hydrogen atoms as a function of detuning 
scaled to the Rabi frequency wr. The potential for a trap at optical frequencies is 
also shown for comparison. 

It is straightforward to show that negative detuning results in trapping of the 
high field seeking 6-state. as discussed earlier. The MW trap has been experimentally 
demonstrated on cesium [14]. One of the difficulties of the MW trap for hydrogen is 
that microwave field amplitudes that can be achieved are of order 102 Gauss so that 
the well depth U/kB is shallow, of order a few millikelvin. In order to fill a trap, the 
temperature of the gas should be T < U/kB, however a gas of hydrogen can only be 
cooled to 50 - 100 mK. To overcome this limitation the atoms are first cooled to a 
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Figure 5. The hybrid trap-a microwave trap in a static trap, showing the microwave 

cavity. 

few hundred microkelvin in a static trap and then transferred into the MW trap, as 

shown in Fig. 5. 
The detuning is adiabatically changed from positive to negative so that the spin- 

relaxation rate is suppressed. The gas can be further cooled to BEC by evaporative 
cooling. It is expected that densities of order 1018 cm"3, where 3-body recombination 
losses become important, can be achieved. 



7. TWO-DIMENSIONAL GAS OF SPH 

A well-known theorem due to Hohenberg [15] states that in a homogeneous 2-D 
system, BEC does not exist; however the KT transition to superfluidity does [16]. It 
has been shown that an inhomogeneous potential in 2-D alters the situation so that 
BEC will take place [17 - 18]. We shall describe an experiment designed to overcome 
the earlier mentioned heating problem and to observe 2-D BEC. 

In earlier studies of SPH as a 2-D gas on helium, typically the 2-D surface area 
was a few square centimeters and all of the recombination energy was eventually 
dissipated into the surface. At coverages of order 1012 - 1013 cm the total power 
due to recombination severely warms the cell. Meyer et al. [19] studied the kinetics 
of the recombination process and found that less than 4% of the available energy 
was deposited at the point where recombination was initiated. When two atoms 
recombine they do so into a vibrational-rotational state of H2 near the continuum so 
that only of order 10"3 of the total recombination energy is released. The energetic 
excited molecule flies off and cascades down the ro-vibrational levels by wall collisions 
until it finally reaches the ground state. Our 2-D cell shown in Fig. 6 takes advantage 
of the non-local dissipation of recombination energy. 

To mixing chubax 

pancaka magnat 
SURTACE 

pincft magnac 

Figure 6. A cell for the study of SPH in a 2-D configuration. The 2-D surface 
is under the pancake magnet which creates a field gradient. Atoms are loaded into 
the buffer cell; their flow to the 2-D surface is controlled with a pinch magnet which 
creates a variable height potential barrier 

Atoms from a storage volume flow onto the 2-D surface. The recombined atoms are 
trapped in a maze opposing the 2-D surface; a simulation has shown that ~ 90% of 
the recombination energy is released in the maze [20]. In this way the heating of the 
2-D surface is reduced. A further reduction is realized by turning on a "pancake" 
magnet, situated above the 2-D surface. This magnet creates a large magnetic field 



gradient, with a maximum at the center of the surface, so that the effective area of 
coverage is reduced by a few orders of magnitude. In order to determine the surface 
density the heat flow from the surface is measured by thermometnc methods. Since 
recombination will be a 3-body process, the coverage decreases as 

^ = -tfi3V   , (7) 
dt s 

where K1
3)
 is the surface recombination rate constant. Then the heating per unit 

area , 

where c is the fraction of energy deposited in the surface. Thus, the measured quantity 
Q3 is proportional to jrf8)<r3. The transition will actually have a special signature. 
Fo'r condensate atoms K^ is at least a factor of 6 smaller than for normal atoms 
[21]. In addition, the surface coverage a should increase by at least a factor of 2 
[22] as elastic pair interactions between condensate atoms are reduced by 2. This 
experiment should be capable of detecting the 2-D BEC transition and mapping its 
dependence on the field gradient. 

In the preceding sections we have discussed three experiments which are designed 
to reveal the quantum degenerate nature of SPH. Hopefully, success will be realized 

in the near future. 
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1. HELIUM IN POROUS MEDIA 

The physics of bosons has found a fascinating rebirth in recent years, sometimes 
in systems far removed from superfluid helium. In this article I will review some of 
the theoretical advances and indicate some of the experiments that motivated them. 

I will begin with superfluid 4He since this boson system is the most familiar. 
The transition to superfluidity in bulk 4He at temperatures of a few Kelvins (the 
exact temperature depending on the external pressure) is probably the most accu- 
rately studied phenomenon in condensed matter physics. Theoretically the transition 
is understood to be in the universality class of a three dimensional XY-model, ex- 
emplified by a lattice of two-component, unit-length classical spins, S{, interacting 
via a nearest neighbor coupling, — Js{ • Sj, with ferromagnetic exchange J > 0 (how 
this comes about should become clearer below). Indeed, calculations based on this 
identification, especially using renormalization group methods, yield an amazingly 
accurate description of experiments close to the critical point [1]. 

Although the basic physics of the bulk superfluid transition has been understood 
for several decades, it is only comparatively recently that we have begun to under- 
stand the superfluid transition under more exotic circumstances. Motivated to some 
extent by experiments on the Kosterlitz-Thouless transition in two-dimensional thin 
films [2], experimentalists began to explore the behavior of 4He adsorbed in various 
porous media, especially Vycor glass [3]. One interest was in very low coverages of he- 
lium, with the expectation that the resulting thermodynamic behavior might appear 
two-dimensional. If such a regime were achievable, the advantage of porous systems 
over the conventional rolled Mylar [2] would be the enormous surface area-to-volume 
ratio (over one-hundred square meters in a cubic centimeter sample of Vycor, as 
opposed to only a few tenths of a square meter in a Mylar roll of similar size). 

The great surprise was that observations showed nothing of the kind! Thus over 
a wide range of coverages of helium in Vycor, from full pores down to fractions of 
a monolayer of surface adsorption, superfluid density data demonstrated clear bulk 
three-dimensional behavior—ps vanishing with the characteristic three-dimensional 



2/3-power law near the transition temperature T\ [3], not the discontinuous jump 
characteristic of two-dimensional Kosterlitz-Thouless behavior [2].  Even more sur- 
prising was the behavior at ultra-low coverages [3], where the effective density, p, of 
mobile helium is on the order of a few atoms per pore, i.e., interatomic separations, 
ds, of order 50-100Ä, 20-30 times the helium effective hard-core diameter, a.  Note 
that there is always a localized/frozen "inert" monolayer or so—which will later be 
important, but at this stage is assumed to play no role—and we define p as the total 
density minus the density of this inert layer.  In this regime the superfluid density 
profiles increasingly resemble those of an ideal Bose gas, vanishing nearly linearly as 
T\(p) is approached. The interpretation, then, is that although the helium atoms are 
believed to reside on the pore surfaces, so that the film is locally two-dimensional, 
the pores are fully interconnected in three dimensions, and the atoms are in fact 
moving throughout a three-dimensional volume. Hence the three-dimensional nature 
of the phase transition. Furthermore, the characteristic size of an atomic wavepacket 
is set by the thermal de Broglie wavelength Ar = /i/(27rmfcBT)1/2, where m is the 
mass of a helium atom. The superfluid transition takes place when ds ~ AT, hence 
T\{p) ~ P2/3. At the ultra-low coverages, T\ is therefore strongly suppressed, and Ay 
becomes of order the pore size. One might imagine, then, that such a wavepacket sees 
the porous medium only in an average sense, with details below the scale AT washed 
out. It is not a great leap of imagination to go from this observation to the picture of 
a dilute Bose gas in which the only role of the porous medium is to yield an effective 
mass meff, and some effective interatomic scattering potential. This last assumption 
is crucial since in pure bulk helium the atomic potential has a long-ranged attractive 
tail which causes it to condense into a dense strongly interacting fluid. A key effect 
of the porous medium must then be to screen out this attractive tail, leaving only the 
repulsive core.  This allows the density to be continuously tuned without the usual 
first-order liquid-vapor transition intervening. 

The above picture is intuitively appealing, but does it stand up to close theoreti- 
cal scrutiny? The answer is both yes and no. On the one hand a detailed analysis [4], 
based entirely on the above effective medium picture, of the crossover from strongly 
interacting to dilute weakly interacting Bose gas behavior as the density, p, is re- 
duced matches the experiments [3] remarkably well (the appropriate small parameter 
describing the strength of interactions is the ratio a/AT). I will have no more to 
say about the details of this agreement, but refer the reader to the literature [4]. I 
will focus rather on the no part of the answer, which leads to even more interesting 
physics. 

The problem with the above effective medium picture is that it does not account 
for the disorder or randomness inherent in porous media. The effects of disorder 
near a critical point can be very serious, sometimes completely changing the univer- 
sality class of the transition. There is a simple criterion, called the Harris criterion 
[5], which determines when this happens: If the specific heat exponent, a, of the 
pure nonrandom transition is positive (i.e., the specific heat actually diverges at the 
transition) then disorder is a relevant perturbation and will give rise to new critical 
behavior. If a is negative, disorder is irrelevant and the critical behavior should be 
unchanged. Now, the value of a for bulk 4He is a « -.02 ± .02, very likely negative. 
This is consistent with the observation of bulk critical exponents for not too low 
coverages of helium in Vycor.  However, as the coverage is reduced the critical be- 



havior crosses over to that of an ideal Bose gas with specific heat exponent a = 1/2, 
a strongly positive value. Thus we expect disorder to have an increasingly stronger 
effect at low coverages. This calls into question the validity of calculations based on 
the effective medium picture, despite their good agreement with the experimental 
data. 

A partial way out is provided by understanding the detailed properties of Vycor 
glass [6]. It transpires that the method by which Vycor is made effectively ensures 
that the disorder on long length scales is extremely weak. It is therefore required 
that p be extremely low, probably below present experimental resolution, before the 
observed nearly ideal behavior is strongly perturbed [6]. Although this observation 
leaves one more comfortable with the effective medium theory, it merely sidesteps the 
really interesting question of what the behavior would be if the disorder was much 
stronger, or equivalently, if the experiments were to probe much lower coverages of 
helium in Vycor. Answering this question leads us into the realm of localization 
effects and quantum phase transitions in interacting boson systems. 

2. BOSON LOCALIZATION AT ZERO TEMPERATURE 

Quantum phase transitions are those that occur at zero temperature, where 
fluctuations are entirely due to the Heisenberg uncertainty principle: The fact that 
certain observables may not commute with the Hamiltonian. As observed previously, 
the superfluid transition temperature decreases with coverage, and vanishes at some 
critical coverage, pc (the "inert" layer), below which superfluidity ceases to exist even 
at T = 0. Changing our perspective slightly, if we sit at T = 0 and consider the total 
density, p, as the independent variable (recall that p = p — pc), we see that the system 
passes from an insulating localized phase with superfluid density ps = 0 for p < pc 

to a superfluid phase with ps > 0 for p > pc. This is precisely a quantum phase 
transition. 

One may define critical exponents associated with this transition. For example 
we may ask how ps(T = 0) increases with p > 0. We expect ps(0) ~ p^ for some 
exponent (. If, as in the effective medium picture, one views pc as a totally inert 
substrate on which the excess density "skates", then we expect ps(0) oc p, i.e., ( = 
1. Indeed for a continuum dilute Bose gas with repulsive interactions one finds 
precisely pc = 0 and ps(0) = p = p. In general we do not expect the precise equality 
ps(0) = p, even in cases where £ = 1 (for example in the case of regular periodic 
porous media), since it is a result of Galilean invariance, which will be broken by 
any residual interactions with the porous medium. As we have seen from the Harris 
criterion argument, the effective medium picture is incorrect in disordered systems 
when p is very close to pc, and £ ^ 1 would not be unexpected. We can gain some 
intuition about the physics by thinking about Anderson localization in noninteracting 
Fermi systems. There, for a given external random potential, which may be thought 
of as a porous medium for our purposes, it is believed that one has low energy localized 
states separated from higher energy extended states by a mobility edge. Therefore 
if free fermions are added to such a system at T — 0, two per state, one first fills 
up the localized levels until a critical density pc is reached, at which point all states 
below the mobility edge are filled; then any excess density p = p — pc goes into the 
extended states and is therefore free to move about the entire system. This Anderson 



metal-insulator type transition is another example of a quantum phase transition. 
Furthermore it violates the effective medium picture. For example, although the 
analogue of ps is absent, one may define a correlation length: The localization length 
(L ~ \p\~v f°r P < 0> which measures the diverging linear extent of the localized 
states as the mobility edge is approached. The exponent i/, which turns out to take 
the value | in the effective medium picture, is highly nontrivial, and its exact value 
is still controversial. 

Building upon the above picture, we now consider bosons instead of fermions. 
It is immediately apparent that repulsive interactions are crucial: Without them the 
ground state would consist of all particles occupying the single lowest energy localized 
state. Clearly the particle density in the region of space occupied by this state 
would be infinite. Any kind of short ranged repulsion would therefore immediately 
preclude behavior of this type. A more accurate picture of what happens is the 
following: As particles are added to the system they more-or-less fill up the low- 
lying localized states until the particles' hard cores preclude further density increase. 
Further additions then have no choice but to occupy higher-lying localized states. 
In effect, the single particle states seen by the added particles are renormalized by 
interactions with the particles already present. Eventually, just as in the free fermion 
case, a critical density pc is reached beyond which, in some self consistent sense to be 
discussed further below, subsequent added particles go into extended states. Since 
the particles are bosons, any occupying these states will Bose condense, forming a 
superfiuid. This picture, then, provides the framework for a microscopic, quantum 
mechanical description of the formation of the frozen "inert" layer in Vycor, and an 
intuitive argument for the existence of a critical density pc. 

One can make this picture much more precise [7]. It is convenient to begin from 
a simple lattice boson model with nearest neighbor hopping and an on-site repulsion 
U > 0. Disorder is included via random site energies ej. Thus we consider the 
second-quantized Hamiltonian, sometimes called the boson Hubbard model, 

where hi = a-ai is the site number operator and p, the overall chemical potential. 
The indices i are assumed to label the sites of a d-dimensional hypercubic lattice and 
< ij > denotes nearest neighbor pairs. One may think of the lattice sites as idealized 
"pores", and the random e; as embodying the varying size, surface curvature, etc. of 
the pores. Clearly J and U ought also to have random components, but it turns out 
that all the important physics may be elucidated keeping only the 6j. 

As pointed out above, the random ideal Bose gas, represented by the first and 
last terms in (1), is the wrong starting point for the problem. Rather, one should 
begin in the opposite limit, where one throws out the first term in (1) by setting the 
hopping J = 0. In this limit there is no communication between different lattice sites 
and the Hamiltonian is diagonal in the basis of eigenstates of the ny. The ground state 
consists of an exact number, nj, of bosons on each site, i, obtained by minimizing 
the single site energy 

Ei = -Un\ + (e; - n)m,    n< > 0 . (2) 



The solution is 
( n0 > 0    for  n0 - | < ^ < n0 + \ fo. 

"< = („ for^<I. (3) 

Thus as \i/U is increased by unity, one more particle is added to each site (except 
for those sites which remain empty). Note that if the e; are bounded such that 
—A < fj < A, with A < | (by redefining the origin of \i if necessary, we assume 
the ei/U cover the symmetric interval [-A, A]), there are a discrete set of intervals 
Jno = (n0 - | + A,n0 + \ — A), for each n0 > 0, such that when |j G Ino all 
sites have precisely no particles. We call these intervals Mott insulating phases, 
identified by the fact that the compressibility /c = dn/dfi, where n = jj X} ni 1S the 

i 
average number of particles per site, vanishes within each interval. For ß outside 
these intervals n varies continuously and K > 0. We shall call these latter intervals 
Bose glass phases. Clearly both types of phase are insulating because J = 0. If 
A > | all Mott phases disappear, and only the Bose glass remains. Conversely, if 
A = 0 (no disorder) the phase diagram consists entirely of Mott phases, pair-wise 
degenerate at half-integer values of p/U. One may, of course, generate much richer 
phase diagrams with charge-density-wave-type Mott ground states (rational values of 
n) by allowing off-site interactions | ^ UijUiUj, or by making the ei periodic (with, 

perhaps, a small random component added). None of this changes the nature of the 
superfluid transition so long as Uij is short-ranged (see below), so we consider only 
the simplest case, Uij = USij. 

Let us now introduce the possibility of superfluidity by adding back the hopping 
J. This adds a new dimension to our (so far) one-dimensional phase diagram. We 
begin by considering J as a perturbation, first on the Mott phases. One may construct 
the ground state perturbatively in J/U. It will consist primarily of the J = 0 ground 
state with precisely no particles per site, however there will also be small admixtures 
of the excited states in which one, or more, of the sites have one or more extra 
particles, with corresponding depleted sites with one or more "holes" (note that the ' 
hopping term conserves overall particle number, so the number of particles equals 
the number of holes). However, each new particle-hole pair costs an extra energy of 
order U (the random potential, if present, will modulate this energy cost in the range 
[t7(l —A), U(l + A)], but this does not change the physics of the argument) and yields 
a component of the ground state with amplitude down by a factor J/U. Similarly, 
each time a particle is hopped one site further from the hole from which it originated, 
the amplitude goes down by a factor J/U. Roughly speaking, then, the probability 
that a particle will hop r steps varies as (J/U)r ~ e~r^, where £ ~ l/\a.(U/J) is a 
correlation length. From here it is not hard to argue that so long as £ is finite one 
remains in the incompressible Mott phase. Thus, although there is a certain amount 
of local fluctuation in the particle number over regions of size £, the overall density 
remains precisely n0. Correspondingly, there will remain an interval, /i_(n0, J) < n < 
fi+(n0,J) on which K = 0, although the width W(n0,J) = fj,+ (no,J) — /i_(n0, J) will 
generally be less than the J = 0 value W(n0,0) = 17(1 - 2A). The function W(n0,J) 
represents the effective energy required to create a particle-hole pair, and for positive 
J it will be reduced because the energy cost U is effectively shared among £d particles 
through a net gain in kinetic (delocalization) energy. As J increases, there will come 
a point Jc(no) at which W(no, Jc{no)) vanishes, i.e., it costs no energy to create 



particle-hole pairs. At this same point the correlation length £ will diverge. In the 
absence of disorder, A = 0, this would signal the onset of superfluidity: Particles 
and holes are now free to hop throughout the system and will Bose condense. The 
phase diagram therefore consists of an infinite set of Mott lobes, one for each value of 
n0, which meet pairwise only at J = 0 and n/U half-integer. Everything outside the 
lobes is superfluid. Clearly the superfiuid phase penetrates right to J = 0 at these 
half-integer points. 

Consider now the transition to superfluidity for J < Jc(no). For fi just above 
/x+(n0, j), so that n is slightly larger than n0, it may be verified in detail by explicit 
calculation [7] that the system behaves like a dilute gas of bosons floating on top of 
the essentially inert Mott layer. Similarly, for /z just beneath /x_(n0, J) one has a 
dilute gas of holes. The transition from Mott to superfluid phase at fixed J is in every 
way identical to the bulk transition from an empty system to a dilute superfluid when 
fj, increases through zero, and is described theoretically by the Bogoliubov model [8] 
(the same transition also occurs, of course, in the lattice system for no = 0). 

The point J = Jc{no) is special. This is the point one goes through when 
the transition occurs at fixed density n = no, and is particle-hole symmetric. Since 
the density is precisely no one can never view the system as a dilute addition to 
an otherwise inert background. It turns out [7] that this extra symmetry puts the 
transition in a different universality class: That of the (d+l)-dimensional XY-model. 
This is the same transition as occurs in helium at finite temperature, but in one higher 
dimension. 

Let us now consider the effects of disorder. We expect, for bounded disorder 
(A < |), that the phase diagram will consist of three phases in the /i — J plane, 
namely the superfluid phase in addition to the Mott and Bose glass insulating phases 
which exist at J = 0. We first discuss the perturbative effects of J on the J = 0 Bose 
glass phase. The fact that n(fi) is continuous follows simply from the fact that, due to 
the random nature of the ej, somewhere in the system there will be sites arbitrarily 
close in energy to a degenerate point ^^ = half integer. A slight increase in /x 
will then add a particle to these sites. Equivalently, there is no energy barrier to the 
creation of particle-hole pairs: Pick two sites, one with energy just below a degenerate 
point, the other with energy just above. At arbitrarily small cost in energy, Ae, one 
may then transfer a particle from the second site to the first. Why, then is the 
phase not superfluid? The argument that it is not is precisely along the fines of the 
original Anderson localization argument for free fermions [7,9]. Two sites with very 
small Ae will generally be very far apart as Ae —► 0. But then the amplitude for 
hopping a particle from one site to the other will be of order (J/U)r, where r is the 
distance between the two sites. For small J this factor will dominate and kill the 
net amplitude for the formation of such a particle-hole excitation. Thus for small J 
each individual Bose particle is localized in a self consistent way by a combination 
of interactions with other particles, and the residual hopping versus near-degeneracy 
effects described above. 

Consider now the transitions between the three phases. Suppose one sits very 
close to the edge of a Mott lobe so that the average density, n, differs only slightly 
from no. One again expects the residual particles (or holes) to behave very much 
like a dilute fluid of density 8n — \n — no|. However, in the presence of disorder this 
dilute fluid will still see a residual random potential due to the ej.  For sufficiently 



small 8n we therefore expect all particles to be localized [see the discussion above 
eq. (1)]. The conclusion is that at any fixed J < Jc(no), the transition out of the 
Mott lobe must be into the Bose glass phase. This still leaves open the question of 
what happens at the special symmetric point J = Jc^o)? n — no- The argument is 
more shaky, but in essence we expect the system, for J slightly larger than Jc{no), 
to look like a dilute "binary" fluid of particles and holes. Thus barring some exotic 
collective effect, we expect the residual random potential to localize both components 
of the fluid, and hence the Bose glass phase should completely surround the Mott 
lobes. Note that in any case, for strong randomness, A > |, as certainly holds for 
all porous systems studied experimentally so far, the Mott lobes disappear entirely 
and Bose glass phase will exist for all values of /x, and sufficiently small values of 
J. For given p. we expect the onset of superfluidity to occur at some critical value 

J - JC{P). 

3. THE BOSE GLASS TO SUPERFLUID TRANSITION 

It is very likely, then, that the transition to superfluidity takes place only from 
the Bose glass phase [7], and it is the physics of this transition which will concern 
us from now on. This is the transition which ought to describe the zero temperature 
insulator to superfluid transition in porous media. 

It turns out that there are a number of conclusions one can draw about this 
transition simply on the basis of the expected scaling behavior of the thermodynamic 
functions. Central to scaling is the existence of a divergent correlation length, in this 
case the effective many body localization length, £. In quantum critical phenomena 
all fluctuations are driven by the quantum dynamics of the ground state wavefunc- 
tion. This introduces, in addition to £, a correlation time, £T, into the equilibrium 
thermodynamics, with a corresponding frequency or energy scale ti = 1/£T. Near 
the transition both £ and £T diverge, and one defines a dynamical exponent, z, via 
£r ~ £z ~ S~zv, where 8 is any convenient measure of the deviation from the critical 
point, e.g., 8 = (x — pc, J — Jc, or p — pc. The scaling hypothesis states that near 
the critical point all lengths scale with £ and all times scale with £r. In addition the 
hypothesis of hyperuniversality states that the critical part of the free energy scales 
as fs « A£~d(h/£r), where A is a universal constant. (This form is motivated by 
dimensional analysis - fs is an energy per unit volume - and may be derived, with 
certain assumptions, from renormalization group theory [10]). With the definition 
fs ~ |<$|2-a, where a is the T — 0 analogue of the specific heat exponent, this yields 
the generalized hyperscaling relation 2 — a = (d + z)v. 

The superfluid density is derived by imposing a long wavelength twist with 
wavevector k0 —> 0 on the superfluid order parameter [11], then computing the deriva- 

tive ps = Tr(d2 f /dkl)k0=o- Since k^1 is a length it must scale in the combination 
k0£. We therefore have immediately [7] ps ~ \8\^, with ( = 2 — a — 2u = (d + z — 2)v. 
Using the Josephson relation between the time rate of change of the superfluid order 
parameter phase and the chemical potential, <j) = —p./h, one may write the total 

compressibility, K = —QZ, in the superfluid phase as a response to a slow twist in 

time, i.e. K = h~2d2f/dul, where u>o —* 0 is the frequency of the twist. We expect 
wo to scale in the combination u>o£r5 therefore K ~ £T£~d ~ 8^d~z'v (note that in 



general the total compressibility K includes, but is distinct from, the singular part of 
the compressibility ns = —d2f3/dn2 ~ S~a). We now come to the key observation: 
Since both the Bose glass and superfiuid phases have a positive, non-zero compress- 
ibility (the argument fails for the Mott to superfiuid transition in the pure case) we 
expect K to be finite through the critical point. This clearly requires a < 0, since K 

includes /ca, and immediately implies the equality z = d. 
A further constraint on the exponents follows from a recent theorem [12] which 

states that in a random system one has the inequality v > 2/d. Using z = d and 
a = 2 — (d + z)u this implies a < —2, consistent with the finiteness of K at 8 = 0. 
From the formula for ( we also have ( > A(d - l)/d = 8/3 for d = 3. This implies 
that ps turns on very slowly as p passes through pc, making it an extremely difficult 
exponent to measure. 

One may define certain exponents which depend only on z and d, and which 
therefore may be evaluated explicitly. For example, for 8 > 0 there is a finite tem- 
perature transition with a Tc that should scale as some power, Tc(8) ~ 80. What is 
91 The quantity h/kßT is a time scale, so Tc must scale with £r, implying 9 = zv. 
But ps{T = 0) ~ $(d+z-2)v^ so we may eliminate u by writing Tc ~ pa(0)s with 
x = z/(d+z - 2) = 3/4 for d = 3. This should be compared to x = 2/d(= 2/3, d = 3) 
for the Mott to superfiuid transition in the pure case. 

Though we have come remarkably far using scaling ideas alone, we have yet 
to address the problem of calculating quantities, such as the exponent v, explicitly. 
For the classical magnetic transitions, the primary analytic technique used for such 
calculations is the epsilon expansion about four dimensions [13]. This expansion relies 
upon the existence of a classical field theoretical representation for the problem—the 
ip4 model in the classical magnetic case [13]. Such classical field theories can indeed be 
found for the dirty boson problem, but they are more complicated than their classical 
magnetic counterparts [7,14]. The crucial difference is the existence of the time 
scale £T: The quantum dynamics must be included in the effective classical theory, 
leading to complex fields <p(x,r) depending on both space and time. Furthermore 
space and time are not equivalent, so the effective field theory is anisotropic in time. 
The addition of disorder adds yet another complication: It couples tp(x.,r) with an 
external static random potential w(x). The fact that w(x) does not depend on r 
implies, in effect, that the disorder, instead of being interpreted as a set of bounded 
point-like impurities, must be interpreted, rather, as a set of one-dimensional rigid 
rods. This makes the problem even more anisotropic. To be more explicit, the 
effective classical Lagrangian is given by 

C = JddxJ   dr|^(x,T)(^:-JV2-MMx,r)+u>(x)|V(x,T)|2+uHx,T)|4|, 

(4) 
with ß = (kßT) -1 and thermodynamics obtained from the partition function Z = 
fr¥'[e~'c] in the usual way. If all r-dependence is suppressed, the form reverts pre- 
cisely to the classical </?4-model for a random XY-magnet. Note that only for T —»• 0 
does the time dimension become infinite in extent. In this formulation, then, pos- 
itive temperature represents a kind of finite size effect. As is standard in critical 
phenomena, any dimension of a system that is finite may be ignored when deciding 
the universality class of a transition. From this follows the irrelevance of quantum 
mechanics at T > 0: The behavior near Tc(8) will be asymptotically governed by the 



classical <p4-model in which all r-dependence is suppressed. 
Although the field theory defined by (4) is very complicated, there still exists an 

epsilon expansion type formalism within which one may derive renormalization group 
recursion relations [14]. The temporal anisotropy of the model, unfortunately, forces 
one to introduce a second expansion parameter, e<j, the dimension of time, which 
along with e = 4 — D (here D = d + et) must be presumed small in order to obtain 
a well defined expansion. Physically one has, of course, e^ = 1 and, for d = 3, e = 0. 
The argument leading to the exact exponent relation z = d was very special to e<j = 1, 
and fails for general e<*: One finds z = 2 + ai,e + a2e<j + 0(e2,eed,e2

d) with nontrivial 
coefficients ai,a2 [14]. The inequality u > 2/d must still be obeyed, however, and 
the expansion for v is consistent with this requirement [14]. This inequality also 
leads to very stringent requirements on how mean field theory becomes exact for 
d > 4 (e + €d < 0), forcing the exponents to jump discontinuously as d increases 
through 4. Amazingly enough the e, ^-expansion provides an explicit mechanism for 
this, whereby the nontrivial and mean field fixed points exchange stability without 
coalescing [14]. 

This completes our general description of the dirty boson problem. We finally 
turn to applications outside helium, in particular to two-dimensional granular and 
amorphous superconductors, and, very briefly, to magnetic flux phases of high Tc 

compounds. 

4. BOSONS AND SUPERCONDUCTIVITY 

The starting point for comparisons between superconductivity and superfluidity 
is the Josephson junction array Hamiltonian [15] 

<ij> i i 

where fa is the phase operator on grain i, and Hi is the conjugate number operator 
which measures the deviation of the number of Cooper pairs on grain i from some 
reference value N0. The U term is the so-called charging energy which disfavors 
large fluctuations in the Hi. The random site energies £j are precisely analogous to 
those in (1), and the chemical potential ß controls the average density. Note that 
if one were to accurately model the coulomb interactions between Cooper pairs the 
charging term should be replaced by | ^ UijUifij, with Uij ex e2|rj — rj|-1. Quantum 

mechanics is completely defined by the commutation relations [<f>i,rij] = iSij, all 
others vanishing. It is then easy to check that the eigenvalues of rn are integers 

(both positive and negative), and that if n^ra» >= ni\ni >, then el(^|nj >= \rii + 1 > 

and e~*^|Tii >= \ni — 1 >.   Furthermore, the operators a] = (N0 +ni)^e%^i and 

a,i = e~t^>i(No + fz-i)2 obey Bose commutation relations, and ni = a\ai = No + n{. 
Substituting these relations into (1) we find that the hopping term takes the form 

J  Y, [(No +n~i)* e^-^'^JVo +™?')^ +h.c], which reduces precisely to the Josephson 
<ij> 

coupling term in (5) if the fluctuations fi; are neglected relative to N0, and if we 



identify J = 2JNQ. Modulo an iVo-dependent additive constant, the rest of the 
terms in (1) and (5) match exactly. We conclude that if NQ is large (1) and (5) are 
quantitatively the same. For small JV0 the detailed physics of the two will differ, but 
will still possess precisely the same critical behavior. The general structure of the 
phase diagram, with Mott, Bose glass, and superfluid phases may be verified [7] in 
a straightforward way. Superfluidity and superconductivity, of course, correspond to 
long range or, perhaps, power law order in the phases fa, which for intuitive purposes 
may be thought of as classical angles in the interval [0,27r]. The Josephson coupling 
is then precisely analogous to the usual XY-coupling between phases. For T > 0 this 
intuition is precisely correct, in some renormalized sense. All of quantum mechanics 
is buried in the operator character of the fa, and only at T = 0 does the classical 
intuition break down and more complicated behavior result. 

The essence of the equivalence between granular superconductors and superflu- 
ids is the assumption of the existence of well defined Cooper pairs well before actual 
superconductivity occurs. Thus the operators fa,üi are well defined even above the 
critical temperature. In granular systems this assumption is valid because individ- 
ual grains are usually sufficiently large that they behave like small pieces of bulk 
superconductor, and order at the bulk transition temperature, Tc°. Ordering between 
grains, mediated by the Josephson coupling J, occurs at a much lower temperature 
TC(J) «C Tc°. Thus well defined Cooper pairs exist within each grain and may be 
treated to good approximation as bosons. To the extent that all excitations of a 
fermionic character, such as pair breaking and residual interactions with normal elec- 
trons [16], are separated from the bosonic excitations, embodied in (5), by a finite 

energy scale AE » Tc( J) this treatment should be exact near the critical point. 

For amorphous systems, without well defined grains, the validity of the boson 
model is less clear. However, one can argue [17] that in dirty systems, which are of 
main interest here, the role of grains is played by localized states in which it is favor- 
able to put pairs of electrons. Nearby localized states are then assumed to interact 
via some effective Josephson coupling, eventually leading to bulk superconductivity. 
An experimental signal of this would again be the existence of a well defined energy 
gap between hopping of localized Cooper pairs and single electron-type excitations. 

The experiments I wish to address are the two-dimensional thin film analogues 
of the zero temperature Bose glass to superfluid transition, or, more appropriately for 
electron systems, the Cooper-pair glass to superconducting transition. The transition 
can be accessed in various ways: For example, by changing the degree of disorder 
in the film; by varying the thickness of the film [18]; or by adjusting an external 
magnetic field [19]. The most interesting observation, which led to much of the 
interest in these systems, is that of universal critical conductances. Thus it was 
observed that the conductance a-(T, 8), where again 8 is any of the above parameters 
which moves the system through the T — 0 transition located at 8 = 0, diverges at 
some Tc(8) for 8 > 0, and vanishes as T —» 0 for 8 < 0, but approaches a constant of 
order unity (in units of 4e2 /h, the inverse quantum of resistance) as T —► 0 for 8 = 0. 
This constant, <r* = ^-limT-^o 0"(2\O), was seen to be remarkably close to unity, 
and a number of theories were proposed suggesting that a* = 1 [20]. Unfortunately, 
although a* is in fact a universal number [21] (see below) it is only unity for a very 
special set of self-dual [22] models, which unfortunately do not correspond to physical 
reality. One concludes then that the experiments which see cr* « 1 are probably not 



yet in the asymptotic zero temperature limit. 
The proof [21] that a* is universal follows from hyperuniversality (see Sec.  3) 

and the Kubo formula which relates the conductivity to the superfiuid density 

<T(T, 8, u;) = -1—^(-«^/(-xfcw) (6) 
771'' 

where m is the boson (i.e., Cooper pair) mass, and w is the frequency. This formula 
holds only if the physics is described by the boson model. The detailed definition 
of the frequency dependent ps is not important, only that it scales as -B£~1£2~"d, 
with a universal coefficient, B (this is equivalent to the hyperuniversality assumption 
for the free energy). Since u> and T scale with £r we have, as 8 —> 0, -^a ss 

€2~dRa{u£T,T£T). Once one sets the units of o>,r, and a, the function R^x^y) is 
universal [21]. In particular, for d = 2 the (2~d prefactor drops out, and in the limit 
T —> 0 with w = 8 = 0 we see that <x* = Rff(0, oo) is indeed a universal number. Note 
that this result does not depend on the values of the exponents z or v. Thus it should 
hold even in the presence of long ranged Coulomb interactions, or applied magnetic 
fields, where the universality class of the transition will in general be different. 

There are a number of other universal combinations one can define not involving 
the conductance [21]. For example, again in d = 2, the combination lim^o Ps(T = 
0,8)/Tc(8) yields a universal number, which could in principle be measured in helium 
experiments. A wide-open problem is the actual calculation of some of these numbers 
for realistic models. 

As a final example of boson physics in electronic systems, we mention the exotic 
magnetic flux phases of high temperature superconductors [23,24]. Using the well- 
known Feynman path-integral formulation of boson statistical mechanics [25], one 
may view the flux fines in the mixed phase of high Tc compounds as boson world 
lines, with time progressing parallel to the applied field. The sample thickness then 
represents the effective inverse temperature of a two-dimensional system of interact- 
ing bosons. The proposed transitions between flux phases in bulk three-dimensional 
samples then correspond to zero temperature transitions between crystalline, super- 
fluid, etc. phases of 2 — d bosons. A major complication, however, arises when 
one considers disordered materials. Physically the disorder comes from impurities 
spread randomly through the bulk sample. Thus the effective bosons will see a time- 
varying as well as spatially-varying random potential. This is very different from the 
"random-rod" problem discussed earlier for the conventional Bose glass. One has 
instead a "vortex glass" which is expected to display many novel properties similar 
to those of a spin glass [24]. Experiments now confirm quite unambiguously the ex- 
istence of this transition [26], but do not as yet give any reasonable estimates for the 
critical exponents, or any detailed properties of the glass phase. Much of the theory 
is of a phenomenological nature [24], but detailed calculations on reasonable models 
are also beginning to appear [27]. 
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ABSTRACT 

The resistance R of a sample depends, in general, on the magnitude H of the magnetic 
field to which the sample is exposed. The magneto-resistive ratio AR/R defined in (1) is a 
measure of the intensity of the magneto-resistive effect. Recently, certain manganese oxides of 
perovskite structure have exhibited values of AR/R well above 100,000%, orders of magnitude 
greater than observed in magnetic layered materials. We present a theoretical model to calculate 
AR/R. The site-dependent distribution function of carriers is determined by means of the 
Maximum Entropy Principle (MEP). In the spirit of Landauer's approach to resistance 
calculations, the difference in chemical potentials at neighboring sites is interpreted as the local 
voltage V, while the local current density J is calculated by an analogue of Fick's first law of 
diffusion with a site-dependent diffusivity. The input to the latter is furnished by the difference 
in particle number at neighboring sites derived via the MEP. The resistance then is proportional 
to V/J, and AR/R promptly ensues at the distribution function is explicitly dependent on the 
magnetic field H. Our results will be contrasted with relevant experimental data. 

1. INTRODUCTION 

Magnetoresistance is the study of the change in electrical resistance in a material as a 
function of temperature in the presence of an externally applied magnetic field. Quantitatively, 
the effect is often expressed in terms of the magnetoresistance ratio, AR/R(H), defined as 

AR/R(H) = [(R(H) - R(0))/R(H)] X100 (1) 

where R(H) and R(0) denote, respectively, the measured resistance at a given temperature in the 
presence of an externally applied field H and in the absence of such an applied field. In normal 
metals, this ratio changes very slowly, only about a few percent, with temperature [1-2]. In the 
1980s, it is found that this ratio, in certain ferromagnetic multi-layered films, exhibits a sudden 
negative change of 5 to 150% at temperatures of few Kelvins [3,4]. This phenomenon is usually 
referred to as Giant Magnetoresistance or GMR. More recently, measurements of the 
magnetoresistance ratios well in excess of 100,000% have been reported in certain perovskites, 
particularly those having manganese as a constituent, under various doping conditions [5,6]. 



This phenomenon, termed as Colossal Magnetoresistance or CMR, like GMR, exhibits a 
negative ratio but distinguishes itself in many other aspects. Besides the sheer difference in 
magnitude between GMR and CMR and between the usual magnetoresistance and CMR, CMR 
is observed while subjecting perovskites to a broad range of environmental conditions. While, 
the usual magnetoresistance is always associated with metallic compounds at very low 
temperature, CMR is observed at temperatures well into the domain of room temperatures in 
ceramic materials which belong, intriguingly, to the same class of materials exhibiting high 
temperature superconductivity. The critical temperature associated with CMR increases with the 
increasing strength of the applied field and the latter could be as high as several Teslas. Clearly, 
the phenomenon involves the thermodynamical evolution of a system characterized by a given 
Hamiltonian in the presence of an applied field. In this paper we, therefore, consider a system 
characterized by a simple Hamiltonian containing a mean field, interaction terms involving spin- 
alignment and spin-anti-alignment, a background or a bath, and interaction with that bath. The 
investigation then centers around studying the temperature evolution of such a system using the 
Maximum Entropy Principle or MEP [7-9] and to see whether magnetoresistance associated with 
such a system could exhibit CMR like behavior for a typical set of parameters characteristic of 

ceramic materials. 

2. THE MODEL 

The Hamiltonian describing the carriers in materials exhibiting CMR is taken to be the 
same one that under different circumstances could exhibit physical properties relevant to high 
temperature superconductivity [10,11], namely 

H = £,. £(/)«,. + ,0BA(i) + M)ndi + U{i)ft + tä\i)l* £,. £(/) (2) 

where 

A, = »,, + nn ; ndi = An - nn , and r. - n„ nn , 

and   A.   and   A.    are related to Fermion creation and annihilation operators   a,   and 
a. obeying canonical anti-commutation rules by 

",-, =anan andni{ =a\aiV 

The index i runs over all sites, either in coordinate or momentum space, depending on whether 
one is envisioning a system of localized or itinerant components. As explained subsequently, the 
model's parameters E, B, M U, t chosen for our investigation are typical for materials exhibiting 
CMR. A, a dimensionless parameter, is determined from the minimization of the Helmholtz Free 
Energy of the system at each temperature. Although, in principle, the parameters may be made 
to vary at different sites, in the present work no such variation is being included. 



To study the thermodynamic evolution of the system characterized by this Hamiltonian, 
we adopt the Maximum Entropy Principle enunciated for similar Hamiltonians [7-11]. In this 
method the entropy (K =Boltzmann constant) 

5 = -K7>(plnp) 

is extremized with respect to Lagrange multipliers associated with the auxiliary conditions that 
the same density matrix yields the expectation values of a set of chosen relevant operators. For 
our purpose, these relevant operators are (i)    ti(i),    the energy at a site i, (ii)   «(/),    the 
number of particles at a site i, (iii)    f(i),   the number of pair at a site i, and (iv) the number of 
anti-pairs at a site. The thermodynamic averages of these relevant operators are given by 

[10,11]. 

<n> = 2 ——  \P) 
1 + e "p[U+2£] + 2e "P£ cosh [ß(5A + M)] 

-P(C/ ♦ 2£) 
<r-> =  

e-  (4) 
!  + e -«£/ ♦ 2£) + 2e -P£cosh[ß(5A + M)] 

<^ ■> -    2 sinh[ß(^A + M)]e-*E (5) 
n*   "       i + e -Kt/ ♦ 2£) + 2e -ß

£cosh[ß(5A + A0] 

</?> = E<n> + (BA + M)<n^> + U<r> + rA2 (6) 

In the above ß may be identified as the reciprocal of the temperature, T, in the units 
obtained by setting Boltzmann constant to one.   <n> represents the total number of spins, up 
and down, at a single site;   <r> is the number of pairs at a site, with the spins of a pair's 
constituents pointing in opposite directions;     <nj>    is the number of spins up minus spins 
down at a site, and is, thus, proportional to the local magnetic moment;   <h> is the total energy 
at a site. All of the above are extensive thermodynamic quantities and, as such, are additive. The 
expression for the free energy F reads: 

_ ß;A2 - ln[l + e-Ku + 2E) + 2e -ß£cosh(ß(£A + M))] (?) 

The condition for thermodynamic equilibrium is that the latter, as a function of A, be a 
minimum. Differentiating (7) and equating the result to zero yields the following self-consistent 
transcendental equation for A 



2j,A 2J?sinhrß(2?A+ikQ]g-p£ _0 (8) 

1 + e -p(U + 2£) + 2e -p£ cosh [ß (BA + M)] 

which, in light of (5), may be rewritten as 

A = -|<V (9) 

When A is interpreted as being proportional to the local mean field responsible for ferromagnetic 
alignment [10], (9) represents the result that such a mean field is proportional to the local 
magnetization, obtained here simply as a consequence of thermodynamic equilibrium, while in 
the conventional Weiss mean-field theory it is postulated a priori [1,12]. 

In materials exhibiting CMR, conductance is believed to occur via the process of site-to- 
site hopping. In practice, carriers are still attracted towards stationary ions, except that the 
number of attraction sites exceeds that of mobile carriers, with the result that no single 
configuration is stable and the system fluctuates continually between available configurations. In 
the absence of a bias, such a process is randomized and no net current results. An applied 
voltage provides the necessary bias for a net current to arise, corresponding to the fact that 
hopping becomes more likely in one particular direction than in any other. However, when a 
voltage is applied at the opposite ends of a sample, the field "seen" by a carrier situated deep 
within the sample (i.e., at least a few interatomic distances away from one end) cannot in general 
be assumed to coincide with the field that the charge would see if it were isolated in empty space. 
Rather, as electric currents flow through the sample, fields build up into configurations 
compatible with the current [13]. 

In principle, such a picture allows one to calculate the electrical resistance through a self- 
consistent scheme. In the case of hopping, electric transport may be modeled as a diffusive 
process, to which we can apply Fick's first law of diffusion [14] 

J{x) = -D{x) *!LW (10) 
dx 

where J(x) is the local probability current, w(x) the local probability density and D(x) is the 
diffusivity. Hopping is triggered by a charge density gradient and Fick's Law simply reflects the 
assumption that current and density gradient be proportional to each other. Since we are 
considering hopping between sites distributed over a discrete lattice, we adopt a discrete version 



of(10)intheform 

eJAB-~DAB 1 K 
UAB 

where eJAB is the electric current density,     e<nA>    and   e<nB> are the charge densities at site 

A and B, respectively, and dAB is the intersite distance. 
The occupation number    <n>   at a site is given by 

-p[t/+ 2(£-n)] + e -Wg-n) cosh [ß(£A +AQ]   \ (12) 
<n>=2 (l + e -p[t/+2(£-ii)] + e -K£-rt C05/2 [ß(5A + AO]J 

(12) indicates that all other conditions being equal (i.e., temperature, magnetic field and coupling 
parameters), a difference in    <n>   between two sites can only be due to a difference m their 
respective electrochemical potentials, ^A and uB. The magnitude of the resulting gradient 
(u, - u«)/edAB will be interpreted physically as the average electric field perceived by a carrier 
hopping between sites A and B. It should be made clear that in this picture it is completely 
immaterial whether one considers the difference in electrochemical potentials (and thus the field) 
as the cause and the ensuing difference in    <n>   , proportional to the current, as the effect, or 
the other way around. Such a duality of perspectives is inherent in Landauer's approach to 
electric transport calculations, which we are adopting here [13,15]. Defining the electncal 
resistance RAB as the ratio between voltage and current, we obtain the expression 

^AB_ _ V-A-V-B VA-»B  (13) 
AB ' IAB     Ae2JAB     Ae2[-DAB(<nA> - <nB>)ldAB] 

in which A is the sample's cross sectional area in a direction perpendicular to the current's. (13) 
is sufficiently general as to allow for local variations of resistance due to, for example, impurities 
or defects  However, here we assume that the sample be reasonably homogeneous and thus, omit 
the subscript AB   Under the present assumptions, the resistance as measured between the ends 
of the sample would simple be proportional to RAB, the proportionality factor being the number N 
of ionic layers constituting the sample in a direction parallel to the current's. Combining (12) 
and (13), the magnetoresistance ratio can be written as 

M    _M^)^^xloor1j<M^-<V(%10o (14) 

"F() R(T,H) [     1<V(°)-<V(°)/ 

In (12) the dependence of    <n>   upon temperature T and applied magnetic field H arises from 
the equalities ß = 1/T and M = (guB/2) H, in which ^B denotes Bohr's magneton and g is the 

carriers' gyromagnetic ratio. 



3. RESULTS AND DISCUSSION 

In our calculations, we have chosen the following values for the parameters: (a) 
E = 0.9 eV. E essentially represents the carriers' effective kinetic energy, possibly incorporating 
a contribution from the Coulomb mean field. The chosen value is typical in the class of 
materials under consideration, (b) U = -1.84 eV. U represents the energy related to the 
formation of fermion pairs. In conventional as well as high-temperature superconductors such 
energy is generally a few times the fermions' kinetic energy near the transition temperature 
[10,11]. We have assumed that pairing energies are related in a similar fashion to kinetic 
energies in CMR materials as well, (c) B = 1.84 x 10"2 eV; t = 9.0 x 10"5 eV; in ferromagnetic 
materials the estimated Weiss field typically reaches magnitudes of the order ~104 Telsa, and 
hence, the quantity B2 /2t corresponding to the maximal field is chosen as to attain the same order 
of magnitude, (d) Finally, M = 4.05 x 10"4 eV; this corresponds to a field of 7.0 Tesla, a 
magnitude utilized in CMR experiments [5,6]. 

In actual calculations the preceding parameters have been inserted in dimensionless form, 
in which their values are, respectively: E = 200; U = -410; B = 4.1; t = 0.02; M = 0.09. In [11] it 
is demonstrated how the Hamiltonian (2), for certain values of the intervening parameters, can 
describe a succession of magnetic phases relevant to CMR. In the absence of an external 
magnetic field (M = 0), it is found that the system is fully aligned   (\<nd>\ = 1 ;<r> =0)  below 
a certain temperature Tc, suddenly becoming anti-aligned   (\<nd>\ = 0 ; <f> = 1)  at Tc and 
tending gradually towards a random alignment at higher and higher temperatures (Fig. 1). The 
application of a sufficiently intense magnetic fields (M * 0) does not alter the latter succession of 
phases, but it causes an upward shift of the transition temperature TC(H), to a higher value i.e., 
TC(H)> Tc. Hence, in the "window" between Tc and TC(H) a system that is normally anti-aligned, 
or antiferromagnetic, suddenly turns aligned, or ferromagnetic, when a magnetic field is switched 
on. Such a field would have otherwise little influence outside of the window. The situation we 
have just described, is illustrated in Fig. 1. 

Figure 1. Net spin (left insert) and net pair (right insert) per site as a function of temperature. 
Solid and dashed line in each insert refer, respectively, to the absence of an applied magnetic 
field and 7T applied field. 



In the left insert ofthat figure, the net spin per site has been plotted both in the absence of 
an applied field i.e., for M = 0, and in the presence of an applied field of 7 Tesla. Clearly, the 
transition temperature from alignment to anti-alignment increases with the applied field. 
Similarly, as shown in the right insert, the transition from the absence of pairs to substantial 
pairing per site occurs at a higher temperature in the presence of an applied field. 

In Table 1, we present our calculated R(0), R(H) and AR/R for three temperatures and 
note that (a) as observed experimentally [16], AR/R(H) = 0 outside a given temperature zone i.e., 
there is a temperature window for such an effect to occur; (b) the effect starts around 150° K and 
ends around 230° K which is in accord with the observation; (c) the relative change in resistivity 
is, indeed, negative as observed; and (d) the magnitude of AR/R could, indeed, be very large. 
For our choice of parameters, the maximum is about 3700%. 

Table 1 

In the table, T, R(0), R(H) and AR/R(H) are, respectively, temperature in Kelvin, resistance in 
the absence of an applied field, resistance in the presence of the applied field, and the 
magnetoresistance ratio as defined in (1). The resistances are in the units of d/(Ae2D). 

T R(0) R(H) AR/R(H) 

146.2 0.52 0.52 0% 

177.5 14.59 0.54 -3658% 

234.9 13.93 13.93 0% 

One can, conclude, that our model makes correct qualitative predictions of the magnetic 
phases. On the other hand, our calculations have shown an extreme sensitivity of the transition 
temperature to the parameters being used, and, thus, we believe that allowing for appropriate 
variations, even of modest magnitude, of the parameters from site to site can enable us to obtain 
good quantitative results as well. In particular, the discrepancy between the sharpness of our 
calculated transition temperature and the smoother experimental ones would be explained if we 
keep in mind that, in actuality, one is measuring bulk properties of a sample, i.e. an average over 
many sites, while our calculations refer to an idealized case, in which the physical parameters are 
taken to be equal at all sites. Calculations with site-dependent parameters are planned in the 
continuation of our program. 

4. CONCLUSION 

Although calculations presented here are limited in scope and further investigations are 
needed and continuing, the model does account for the broad features of the CMR effect. In 
particular, it provides (a) a connection between magnetoresistive effects and the observed 
magnetic phases, (b) an understanding of how the magnetoresistive effect could manifest itself in 
a particular temperature zone, and (c) quantitative results for CMR. 
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